MIT Video Course

Video Course Study Guide

Klaus-Jürgen Bathe
Professor of Mechanical Engineering, MIT

PREFACE

The analysis of complex static and dynamic problems involves in essence three stages: selection of a mathematical model, analysis of the model, and interpretation of the results. During recent years the finite element method implemented on the digital computer has been used successfully in modeling very complex problems in various areas of engineering and has significantly increased the possibilities for safe and costeffective design. However, the efficient use of the method is only possible if the basic assumptions of the procedures employed are known, and the method can be exercised confidently on the computer.

The objective in this course is to summarize modern and effective finite element procedures for the linear analyses of static and dynamic problems. The material discussed in the lectures includes the basic finite element formulations employed, the effective implementation of these formulations in computer programs, and recommendations on the actual use of the methods in engineering practice. The course is intended for practicing engineers and scientists who want to solve problems using modern and efficient finite element methods.

Finite element procedures for the nonlinear analysis of structures are presented in the follow-up course, Finite Element Procedures for Solids and Structures - Nonlinear Ânalysis.

In this study guide short descriptions of the lectures and the viewgraphs used in the lecture presentations are given. Below the short description of each lecture, reference is made to the accompanying textbook for the course: Finite Element Procedures in Engineering Analysis, by K.J. Bathe, PrenticeHall, Inc., 1982.

The textbook sections and examples, listed below the short description of each lecture, provide important reading and study material to the course.

Contents

Lectures

l. Some basic concepts of engineering analysis 1-1
2. Analysis of continuous systems; differential and variational formulations 2-1
3. Formulation of the displacement-based finite element method 3-1
4. Generalized coordinate finite element models 4-1
5. Implementation of methods in computer programs; examples SAP, ADINA 5-1
6. Formulation and calculation of isoparametric models 6-1
7. Formulation of structural elements 7-1
8. Numerical integrations, modeling considerations 8-1
9. Solution of finite element equilibrium equations in static analysis 9-1
10. Solution of finite element equilibrium equations in dynamic analysis 10-1
11. Mode superposition analysis; time history 11-1
12. Solution methods for calculations of frequencies and mode shapes 12-1

SOME BASIC CONCEPTS OF ENGINEERING ANALYSIS

LECTURE 1
46 MINUTES

LECTURE 1 Introduction to the course, objective of lectures
Some basic concepts of engineering analysis, discrete and continuous systems, problem types: steady-state, propagation and eigenvalue problems

Analysis of discrete systems: example analysis of a spring system

Basic solution requirements
Use and explanation of the modern direct stiffness method

Variational formulation

TEXTBOOK: Sections: 3.1 and 3.2.1, 3.2.2, 3.2.3, 3.2.4

Examples: 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14

INTRODUCTION TO LINEAR ANALYSIS OF SOLIDS AND STRUCTURES

- The finite element method is now widely used for analysis of structural engineering problems.
- In civil, aeronautical, mechanical, ocean, mining, nuclear, biomechanical,... engineering
- Since the first applications two decades ago,
- we now see applications in linear, nonlinear, static and dynamic analysis.
- various computer programs are available and in significant use

My objective in this set of
lectures is:

- to introduce to you finite element methods for the linear analysis of solids and structures.
["linear" meaning infinitesimally small displacements and linear elastic material properties (Hooke's law applies)]
- to consider
- the formulation of the finite element equilibrium equations
- the calculation of finite element matrices
- methods for solution of the governing equations
- computer implementations
-to discuss modern and effective techniques, and their practical usage.

REMARKS

- Emphasis is given to physical explanations rather than mathematical derivations
- Techniques discussed are those employed in the computer programs

SAP and ADINA

$S A P=$ Structural Analysis Program

$$
\begin{aligned}
\text { ADINA } \equiv & \text { Automatic Dynamic } \\
& \text { Incremental Nonlinear Analysis }
\end{aligned}
$$

- These few lectures represent a very brief and compact introduction to the field of finite element analysis
- We shall follow quite closely certain sections in the book

Finite Element Procedures in Engineering Analysis, Prentice-Hall, Inc.
(by K.J. Bathe).

Finite Element Solution Process

Analysis of cooling tower.

Analysis of dam.

Finite element mesh for tire inflation analysis.

Segment of a spherical cover of a laser vacuum target chamber.

SOME BASIC CONCEPTS OF ENGINEERING ANALYSIS

The analysis of an engineering system requires:

- idealization of system
- formulation of equilibrium equations
- solution of equations
- interpretation of results

SYSTEMS

DISCRETE	CONTINUOUS
response is described by	response is described by variables at a variales at
finite number	an infinite number of points
of points	
set of alge- braic	set of differ- ential
equations	equations

PROBLEM TYPES ARE

- STEADY -STATE (statics)
- PROPAGATION (dynamics)
- EIGENVALUE

For discrete and continuous systems

Analysis of complex continuous system requires solution of differential equations using numerical procedures
reduction of continuous system to discrete form
powerful mechanism:
the finite element methods, implemented on digital computers

ANALYSIS OF DISCRETE SYSTEMS

Steps involved:

- system idealization into elements
- evaluation of element equilibrium requirements
- element assemblage
- solution of response

Example:

steady - state analysis of
system of rigid carts
interconnected by springs

Physical layout

ELEMENTS

$$
k_{2}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
F_{1}^{(2)} \\
F_{2}^{(2)}
\end{array}\right]
$$

$$
k_{3}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
F_{1}^{(3)} \\
F_{2}^{(3)}
\end{array}\right]
$$

$k_{4}\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{3}\end{array}\right]=\left[\begin{array}{l}F_{1}^{(4)} \\ F_{3}^{(4)}\end{array}\right]$

$$
k_{5}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
u_{2} \\
u_{3}
\end{array}\right]=\left[\begin{array}{l}
F_{2}^{(5)} \\
F_{3}^{(5)}
\end{array}\right]
$$

Element interconnection requirements:
$F_{1}^{(1)}+F_{1}^{(2)}+F_{1}^{(3)}+F_{1}^{(4)}=R_{1}$
$F_{2}^{(2)}+F_{2}^{(3)}+F_{2}^{(5)}=R_{2}$
$F_{3}^{(4)}+F_{3}^{(5)}=R_{3}$
These equations can be written in the form
$\underline{K} \underline{U}=\underline{R}$

Equilibrium equations

$$
\begin{aligned}
& \underline{K} \underline{U}=\underline{R} \\
& \underline{U}^{\top}=\left[\begin{array}{lll}
u_{1} & u_{2} & u_{3}
\end{array}\right] ; \\
& \underline{R}^{\top}=\left[\begin{array}{lll}
R_{1} & R_{2} & R_{3}
\end{array}\right]
\end{aligned}
$$

and we note that

$$
\underline{K}=\sum_{i=1}^{5} \underline{K}^{(i)}
$$

where

$$
\begin{gathered}
\underline{K}^{(1)}=\left[\begin{array}{ccc}
k_{1} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
\underline{K}^{(2)}=\left[\begin{array}{ccc}
k_{2} & -k_{2} & 0 \\
-k_{2} & k_{2} & 0 \\
0 & 0 & 0
\end{array}\right] \\
\text { etc... }
\end{gathered}
$$

This assemblage process is called the direct stiffness method

The steady-state analysis is completed by solving the equations in (a)

$$
\begin{aligned}
& \underline{K}=\sum_{i=1}^{5} \underline{K}^{(i)}
\end{aligned}
$$

In this example we used the direct approach; alternatively we could have used a variational approach.

In the variational approach we operate on an extremum formulation:

$$
\begin{aligned}
\Pi= & u-w \\
u= & \text { strain energy of system } \\
\boldsymbol{w}= & \text { total potential of the } \\
& \text { loads }
\end{aligned}
$$

Equilibrium equations are obtained from

$$
\begin{equation*}
\frac{\partial I I}{\partial u_{i}}=0 \tag{b}
\end{equation*}
$$

In the above analysis we have

$$
\begin{aligned}
u & =\frac{1}{2} \underline{U}^{\top} \underline{K} \underline{U} \\
w & =\underline{U}^{\top} \underline{R}
\end{aligned}
$$

Invoking (b) we obtain

$$
\underline{K} \underline{U}=\underline{R}
$$

Note: to obtain U and \mathscr{W} we again add the contributions from all elements

PROPAGATION PROBLEMS

main characteristic: the response changes with time \Rightarrow need to include the d^{\prime} Alembert forces:
$\underline{K} \underline{U}(t)=\underline{R}(t)-\underline{M} \underline{\ddot{U}}(t)$

For the example:
$\underline{M}=\left[\begin{array}{lll}m_{1} & 0 & 0 \\ 0 & m_{2} & 0 \\ 0 & 0 & m_{3}\end{array}\right]$

EIGENVALUE PROBLEMS

we are concerned with the generalized eigenvalue problem (EVP)

$$
\underline{A} \underline{v}=\lambda \underline{B} \underline{v}
$$

\underline{A}, \underline{B} are symmetric matrices of order n
\underline{v} is a vector of order n
λ is a scalar
EVPs arise in dynamic and buckling analysis

Example: system of rigid carts

$$
\begin{aligned}
& \underline{M} \underline{\ddot{U}}+\underline{K} \underline{U}=\underline{0} \\
& \text { Let } \\
& \underline{U}=\Phi \sin \omega(t-\tau)
\end{aligned}
$$

Then we obtain

$$
\begin{aligned}
& -\omega^{2} \underline{M} \underline{\sin \omega(t-\tau)} \\
& \quad+\underline{k} \Phi \sin \omega(t-\tau)=\underline{0}
\end{aligned}
$$

Hence we obtain the equation

$$
\underline{K} \underline{\phi}=\omega^{2} \underline{M} \phi
$$

There are 3 solutions
$\left.\begin{array}{c}\omega_{1}, \Phi_{1} \\ \omega_{2}, \Phi_{2} \\ \omega_{3}, \Phi_{3}\end{array}\right\}$ eigenpairs

In general we have n solutions

ANALYSIS OF CONTINUOUS SYSTEMS; DIFFERENTIAL AND VARIATIONAL FORMULATIONS

LECTURE 2
59 MINUTES

LECTURE 2 Basic concepts in the analysis of continuous systems

Differential and variational formulations
Essential and natural boundary conditions
Definition of $\mathbf{C l}^{m-1}$ variational problem
Principle of virtual displacements
Relation between stationarity of total potential, the principle of virtual displacements, and the differential formulation

Weighted residual methods, Galerkin, least squares methods

Ritz analysis method
Properties of the weighted residual and Ritz methods

Example analysis of a nonuniform bar, solution accuracy, introduction to the finite element method

CONTINUOUS SYSTEMS

Example - Differential formulation

The problem governing differential equation is

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}, c=\sqrt{\frac{E}{\rho}}
$$

Derivation of differential equation

The element force equilibrium requirement of a typical differential element is using d'Alembert's principle

$$
\left.\sigma A\right|_{x}+\left.A \frac{\partial \sigma}{\partial x}\right|_{x} d x-\left.\sigma A\right|_{x}=\rho A \frac{\partial^{2} u}{\partial t^{2}}
$$

The constitutive relation is

$$
\sigma=E \frac{\partial u}{\partial x}
$$

Combining the two equations above we obtain

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}}
$$

The boundary conditions are

$$
\begin{gathered}
u(0, t)=0 \quad \Rightarrow \text { essential (displ.) B.C. } \\
E A \frac{\partial u}{\partial x}(L, t)=R_{0} \quad \Rightarrow \text { natural (force) B.C. }
\end{gathered}
$$

with initial conditions

$$
\begin{aligned}
& u(x, 0)=0 \\
& \frac{\partial u}{\partial t}(x, 0)=0
\end{aligned}
$$

In general, we have
highest order of (spatial) derivatives in problem-governing differential equation is 2 m .
highest order of (spatial) derivatives in essential b.c. is (m-1)
highest order of spatial derivatives in natural b.c. is ($2 \mathrm{~m}-1$)

Definition:

We call this problem a $\mathbf{C}^{\mathbf{m - 1}}$ variational problem.

Example-Variational formulation

We have in general

$$
\Pi=u-w
$$

For the rod
$\Pi=\int_{0}^{L} \frac{1}{2} E A\left(\frac{\partial u}{\partial x}\right)^{2} d x-\int_{0}^{L} u f^{B} d x-u_{L} R$
and
$u_{0}=0$
and we have $\delta \Pi=0$

The stationary condition $\delta \Pi=\mathbf{0}$ gives

$$
\begin{gathered}
\int_{0}^{L}\left(E A \frac{\partial u}{\partial x}\right)\left(\delta \frac{\partial u}{\partial x}\right) d x-\int_{0}^{L} \delta u f^{B} d x \\
-\delta u_{L} R=0
\end{gathered}
$$

This is the principle of virtual displacements governing the problem. In general, we write this principle as

$$
\begin{aligned}
\int_{\mathbf{V}} \delta \underline{\epsilon}^{\mathbf{T}} \underline{\tau} d V= & \int_{\mathbf{V}} \delta \underline{U}^{\mathbf{T}} \underline{f}^{\mathbf{B}} \mathrm{dV} \\
& +\int_{\mathbf{S}} \delta \underline{\mathbf{U}}^{\mathbf{S}} \underline{\underline{f}}^{\mathbf{S}} \mathrm{dS}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{V} \bar{\epsilon}^{\top} \underline{I} d V=\int_{V} \underline{\bar{U}}^{T} \underline{f}^{B} d V \\
&+\int_{S} \underline{\bar{U}}^{\mathbf{S}} \underline{f}^{S} d S
\end{aligned}
$$

(see also Lecture 3)

However, we can now derive the differential equation of equilibrium and the b.c. at $x=L$.

Writing $\frac{\partial \delta u}{\partial x}$ for $\frac{\delta \partial u}{\partial x}$, re-
calling that EA is constant and using integration by parts yields

$$
\begin{aligned}
&-\int_{0}^{L}\left(E A \frac{\partial^{2} u}{\partial x^{2}}+f^{B}\right) \delta u d x+\left[\left.E A \frac{\partial u}{\partial x}\right|_{x=L}-R\right] \delta u_{L} \\
&-\left.E A \frac{\partial u}{\partial x}\right|_{x=0}
\end{aligned}
$$

Since δu_{0} is zero but δu is arbitrary at all other points, we must have

$$
E A \frac{\partial^{2} u}{\partial x^{2}}+f^{B}=0
$$

and
$\left.E A \frac{\partial u}{\partial x}\right|_{x=L}=R$
Also, $f^{B}=-A \rho \frac{\partial^{2} u}{\partial t^{2}} \quad$ and
hence we have
$\frac{\partial^{2} u}{\partial x^{2}}=\frac{1}{c^{2}} \frac{\partial^{2} u}{\partial t^{2}} ; c=\sqrt{\frac{E}{\rho}}$

The important point is that invoking $\delta \Pi=0$ and using the essential b.c. only we generate

- the principle of virtual displacements
- the problem-governing differential equation
- the natural b.c. (these are in essence "contained in" II, i.e., in wel.

In the derivation of the problemgoverning differential equation we used integration by parts

- the highest spatial derivative
in Π is of order m.
-We use integration by parts m-times.

Weighted Residual Methods

Consider the steady-state problem

$$
\begin{equation*}
L_{2 m}[\phi]=r \tag{3.6}
\end{equation*}
$$

with the B.C.

$$
\mathrm{B}_{\mathrm{i}}[\phi]=\left.\mathrm{q}_{\mathrm{i}}\right|_{\text {at boundary }(3.7)} \quad \mathbf{i}=1,2, \ldots
$$

The basic step in the weighted residual (and the Ritz analysis) is to assume a solution of the form

$$
\begin{equation*}
\bar{\phi}=\sum_{i=1}^{n} a_{i}{ }_{i} \tag{3.10}
\end{equation*}
$$

where the f_{i} are linearly independent trial functions and the a_{i} are multipliers that are determined in the analysis.

Using the weighted residual methods, we choose the functions f_{j} in (3.10) so as to satisfy all boundary conditions in (3.7) and we then calculate the residual,

$$
\begin{equation*}
R=r-L_{2 m}\left[\sum_{i=1}^{n} a_{i} f_{i}\right] \tag{3.11}
\end{equation*}
$$

The various weighted residual methods differ in the criterion that they employ to calculate the a_{i} such that R is small. In all techniques we determine the $\mathbf{a}_{\mathbf{i}}$ so as to make a weighted average of R vanish.

Galerkin method

In this technique the parameters a_{i} are determined from the n equations

$$
\begin{equation*}
\int_{D} f_{i} R d D=0 \quad i=1,2, \ldots, n \tag{3.12}
\end{equation*}
$$

Least squares method
In this technique the integral of the square of the residual is minimized with respect to the parameters $\mathbf{a}_{\mathbf{i}}$.

$$
\frac{\partial}{\partial a_{i}} \int_{D} R^{2} d D=0 \quad i=1,2, \ldots, n
$$

[The methods can be extended to operate also on the natural boundary conditions, if these are not satisfied by the trial functions.]

RITZ ANALYSIS METHOD

Let II be the functional of the $\mathbf{c}^{\mathrm{m}-1}$ variational problem that is equivalent to the differential formulation given in (3.6) and (3.7). In the Ritz method we substitute the trial functions $\bar{\phi}$ given in (3.10) into $I I$ and generate n simultaneous equations for the parameters a_{i} using the stationary condition on II,
$\frac{\partial \Pi}{\partial a_{j}}=0 \quad i=1,2, \ldots, n$

Properties

- The trial functions used in the Ritz analysis need only satisfy the essential b.c.
- Since the application of $\delta \Pi=0$ generates the principle of virtual displacements, we in effect use this principle in the Ritz analysis.
- By invoking $\delta \Pi=0$ we minimize the violation of the internal equilibrium requirements and the violation of the natural b.c.
- A symmetric coefficient matrix is generated, of form
$\underline{K} \underline{U}=\underline{R}$

Example

Fig. 3.19. Bar subjected to concentrated end force.

Here we have
$I=\int_{0}^{180} \frac{1}{2} E A\left(\frac{\partial u}{\partial x}\right)^{2} d x-\left.100 u\right|_{x=180}$
and the essential boundary condition
is $\left.u\right|_{x=0}=0$
Let us assume the displacements

Case 1

$u=a_{1} x+a_{2} x^{2}$
Case 2
$u=\frac{x u_{B}}{100} \quad 0 \leq x \leq 100$
$u=\left(1-\frac{x-100}{80}\right) u_{B}+\left(\frac{x-100}{80}\right) u_{C}$

$$
100 \leq x \leq 180
$$

We note that invoking $\delta \Pi=0$
we obtain

$$
\begin{gathered}
\delta \Pi=\int_{0}^{180}\left(E A \frac{\partial u}{\partial x}\right) \delta\left(\frac{\partial u}{\partial x}\right) d x-\left.100 \delta u\right|_{x=180} \\
=0
\end{gathered}
$$

or the principle of virtual displacements

$$
\begin{aligned}
& \int_{0}^{180}\left(\frac{\partial \delta u}{\partial x}\right)\left(E A \frac{\partial u}{\partial x}\right) d x=\left.100 \delta u\right|_{x=180} \\
& \int_{V}^{\underline{\varepsilon}^{T}} \underline{T} d V=\bar{U}_{i} F_{i}
\end{aligned}
$$

Exact Solution

Using integration by parts we obtain

$$
\begin{aligned}
& \frac{\partial}{\partial x}\left(E A \frac{\partial u}{\partial x}\right)=0 \\
& \left.E A \frac{\partial u}{\partial x}\right|_{x=180}=100
\end{aligned}
$$

The solution is

$$
u=\frac{100}{E} x ; 0 \leq x \leq 100
$$

$$
u=\frac{10000}{E}+\frac{4000}{E}-\frac{4000}{E\left(1+\frac{x-100}{40}\right)} ;
$$

$$
100 \leq x \leq 180
$$

The stresses in the bar are

$$
\begin{aligned}
& \sigma=100 ; \quad 0 \leq x \leq 100 \\
& \sigma=\frac{100}{\left(1+\frac{x-100}{40}\right)^{2}} ; 100 \leq x \leq 180
\end{aligned}
$$

Performing now the Ritz analysis:

Case 1

$$
\begin{gathered}
I=\frac{E}{2} \int_{0}^{100}\left(a_{1}+2 a_{2} x\right)^{2} d x+\frac{E}{2} \int_{100}^{180}\left(1+\frac{x-100}{40}\right)^{2} \\
\quad\left(a_{1}+2 a_{2} x\right)^{2} d x-\left.100 u\right|_{x=180}
\end{gathered}
$$

Invoking that $\delta I I=0 \quad$ we obtain
$E\left[\begin{array}{ll}0.4467 & 116 \\ 116 & 34076\end{array}\right]\left[\begin{array}{l}a_{1} \\ a_{2}\end{array}\right]=\left[\begin{array}{l}18 \\ 3240\end{array}\right]$
and
$a_{1}=\frac{128.6}{E} ; \quad a_{2}=-\frac{0.34 .1}{E}$

Hence, we have the approximate solution
$u=\frac{i 20.6}{E} x-\frac{0.341}{E} x^{2}$
$\sigma=128.6-0.682 x$

Case 2

Here we have

$$
\begin{gathered}
\Pi=\frac{E}{2} \int_{0}^{100}\left(\frac{1}{100} u_{B}\right)^{2} d x+\frac{E}{2} \int_{100}^{180}\left(1+\frac{x-100}{40}\right)^{2} \\
\left(-\frac{1}{80} u_{B}+\frac{1}{80} u_{C}\right)^{2} d x
\end{gathered}
$$

Invoking again $\delta I I=0$ we obtain

$$
\frac{E}{240}\left[\begin{array}{cc}
15.4 & -13 \\
-13 & 13
\end{array}\right]\left[\begin{array}{l}
u_{B} \\
u_{C}
\end{array}\right]=\left[\begin{array}{l}
0 \\
100
\end{array}\right]
$$

Hence, we now have

$$
u_{B}=\frac{10000}{E} ; \quad u_{C}=\frac{11846.2}{E}
$$

and

$$
\begin{aligned}
& \sigma=100 \quad ; \quad 0 \leq x \leq 100 \\
& \sigma=\frac{1846.2}{80}=23.08 \quad x \geq 100
\end{aligned}
$$

We note that in this last analysis

- we used trial functions that do not satisfy the natural b.c.
- the trial functions themselves are continuous, but the derivatives are discontinuous at point B . for a $\mathbf{C l}^{\mathbf{m - 1}}$ variational problem we only need continuity in the ($\mathrm{m}-1$) st derivatives of the functions; in this problem $\mathbf{m}=1$.
-domains A-B and B-C are
finite elements and
WE PERFORMED A
FINITE ELEMENT
ANALYSIS.

FORMULATION OF THE DISPLACEMENT-BASED FINITE ELEMENT METHOD

LECTURE 3
58 MINUTES

LECTURE 3 General effective formulation of the displace-ment-based finite element method

Principle of virtual displacements
Discussion of various interpolation and element matrices

Physical explanation of derivations and equations

Direct stiffness method
Static and dynamic conditions
Imposition of boundary conditions
Example analysis of a nonuniform bar, detailed discussion of element matrices

TEXTBOOK: Sections: 4.1, 4.2.1, 4.2.2
Examples: 4.1, 4.2, 4.3, 4.4

FORMULATION OF
THE DISPLACEMENT -
BASED FINITE
ELEMENT METHOD

- A very general formulation
- Provides the basis of almost all finite element analyses performed in practice
-The formulation is really a modern appli cation of the Ritz/ Galerkin procedures discussed in lecture 2
- Consider static and dynamic conditions, but linear analysis

Fig. 4.2. General three-dimensional body.

The external forces are

$$
\underline{f}^{B}=\left[\begin{array}{c}
f_{X}^{B} \tag{4.1}\\
f_{Y}^{B} \\
f_{Z}^{B}
\end{array}\right] ; \quad \underline{f}^{S}=\left[\begin{array}{c}
f_{X}^{S} \\
f_{Y}^{S} \\
f_{Z}^{S}
\end{array}\right] ; \quad \underline{F}^{i}=\left[\begin{array}{c}
F_{X}^{i} \\
F_{Y}^{i} \\
F_{Z}^{i}
\end{array}\right]
$$

The displacements of the body from the unloaded configuration are denoted by U, where

$$
\underline{U}^{\top}=\left[\begin{array}{lll}
U & v & W \tag{4.2}
\end{array}\right]
$$

The strains corresponding to \mathbf{U} are,

$$
\begin{equation*}
\underline{\epsilon}^{\top}=\left[\epsilon_{X X} \epsilon_{Y Y} \epsilon_{Z Z} \gamma_{X Y} \gamma_{Y Z} \gamma_{Z X}\right] \tag{4.3}
\end{equation*}
$$

and the stresses corresponding to ϵ are

$$
\underline{\tau}^{\top}=\left[\begin{array}{lllll}
\tau_{X X} & \tau_{Y Y} & { }^{\tau} Z Z & { }^{\tau} X Y & { }^{\tau} Y Z \tag{4.4}
\end{array}{ }^{\tau_{Z X}}\right]
$$

Principle of virtual displacements

$$
\begin{align*}
\int_{V} \underline{\epsilon}^{-T} \underline{T} d V=\int_{V} \bar{U}^{T} \underline{f}^{B} d V & +\int_{S^{-}} \underline{\bar{U}}^{T}{ }_{\underline{I}} S^{T} d S \\
& +\sum_{i} \underline{U}^{T} \underline{F}^{i} \tag{4.5}
\end{align*}
$$

where

$$
\begin{align*}
& \overline{\underline{u}}^{\top}=\left[\begin{array}{lll}
\bar{U} & \bar{V} & \bar{w}
\end{array}\right] \tag{4.6}\\
& \bar{\epsilon}^{\top}=\left[\begin{array}{ll}
\bar{\epsilon}_{X X} & \bar{\epsilon}_{Y Y} \bar{\epsilon}_{Z Z} \\
\bar{\gamma}_{X Y} & \bar{\gamma}_{Y Z} \\
\bar{\gamma}_{Z X}
\end{array}\right] \tag{4.7}
\end{align*}
$$

Fig. 4.2. General three-dimensional body.

Finite element

For element (m) we use:
$\underline{u}^{(m)}(x, y, z)=\underline{H}^{(m)}(x, y, z) \underline{\hat{u}}$
$\underline{\underline{u}}^{\top}=\left[\begin{array}{llll}U_{1} v_{1} W_{1} & U_{2} v_{2} W_{2} & \ldots & U_{N} v_{N} W_{N}\end{array}\right] ;$
$\underline{\hat{u}}^{\top}=\left[\begin{array}{llll}u_{1} & U_{2} U_{3} & \ldots & u_{n}\end{array}\right]$
$\underline{\epsilon}^{(m)}(x, y, z)=\underline{B}^{(m)}(x, y, z) \underline{\hat{U}}$
$\underline{\tau}^{(m)}=\underline{c}^{(m)} \underline{\underline{\epsilon}}^{(m)}+\underline{\underline{\tau}}^{I(m)}$

Rewrite (4.5) as a sum of integrations over the elements

$$
\begin{align*}
& \sum_{m} \int_{V}(m) \overline{\boldsymbol{\epsilon}}^{(m)^{\top}} \underline{I}^{(m)}{ }_{d V}(m)= \\
& \sum_{m} \int_{V}(m) \underline{\underline{U}}^{(m)^{\top}} \underline{f}^{B}{ }^{(m)}{ }_{d V}(m) \\
& +\sum_{m} \int_{S}(m) \underline{\underline{J}}^{(m) T} \underline{f}^{S^{(m)}} d S^{(m)} \\
& +\sum_{i} \underline{\underline{U}}^{\mathbf{i}} \underline{F}^{\mathbf{i}} \tag{4.12}
\end{align*}
$$

Substitute into (4.12) for the element displacements, strains, and stresses, using (4.8), to (4.10),

$$
\begin{aligned}
& \underline{f}^{T}\left\{\sum_{m} \int_{V}(m) \underline{B}^{(m)^{\top} \underline{C}^{(m)} \underline{B}^{(m)} \mathrm{dV}}{ }^{(\mathrm{m})}\right\} \underline{\hat{U}}=\quad \underline{\bar{\varepsilon}}^{(m)^{\top}} \quad \underline{\pi}^{(m)}=\underline{C}^{(m)} \underline{\varepsilon}^{(m)}
\end{aligned}
$$

$$
\begin{align*}
& \left.-\sum_{m} \int_{V}(m) \underline{B}^{(m)^{\top} \underline{\tau}^{(m)} d V}{ }^{(m)}\right\} \quad \underline{\underline{U}}^{(m)^{\top}} \quad \underline{\underline{\varepsilon}}^{(m)^{\top}} \\
& +\underline{F}] \tag{4.13}
\end{align*}
$$

We obtain

$$
\begin{equation*}
\underline{K} \underline{U}=\underline{R} \tag{4.14}
\end{equation*}
$$

where

$$
\begin{align*}
& \underline{R}=\underline{R}_{B}+\underline{R}_{S}-\underline{R}_{I}+\underline{R}_{C} \tag{4.15}\\
& \underline{K}=\sum_{m} \int_{V V}(m) \cdot \underline{B}^{(m)^{\top}} \underline{C}^{(m)} \underline{B}^{(m)}{ }_{d V}(m) \tag{4.16}\\
& R_{B}=\sum_{m} \int_{V}(m) \underline{H}^{(m)^{\top}} \underline{f}^{B}{ }^{(m)}{ }_{d V}(m) \tag{4.17}\\
& \underline{R}_{S}=\sum_{m} \int_{V(m)} \underline{H}^{S(m)} \underline{f}^{\top}{ }^{(m)}{ }_{d S}(m) \tag{4.18}\\
& \underline{R}_{I}=\sum_{m} \int_{V}(m) \underline{B}^{(m)^{\top} \underline{\tau}^{I}}{ }^{(m)}{ }_{d V}(m) \tag{4.19}\\
& \mathrm{R}_{\mathrm{C}}=\underline{F} \tag{4.20}
\end{align*}
$$

In dynamic analysis we have

$$
\begin{align*}
& \underline{R}_{B}=\sum_{m} \int_{V}(m) \underline{H}^{(m)^{T}}{\underline{f^{\underline{B}}}}^{(m)} \\
& -\rho^{(m)} \underline{H}^{(m)} \underline{\ddot{U}] d V}{ }^{(m)} \\
& \underline{M} \underline{\ddot{U}}+\underline{K} \underline{U}=\underline{R} \tag{4.22}\\
& \underline{M}=\sum_{m} \int_{V}(m) \rho^{(m)} \underline{H}^{(m)^{T}} \underline{H}^{(m)} d V(m) \tag{4.23}\\
& \underline{f}^{B}{ }^{(m)}=\underline{\tilde{f}}^{\text {B }}{ }^{(m)}-\rho \underline{\underline{u}}^{(m)} \\
& \underline{\ddot{u}}^{(\mathrm{m})}=\underline{H}^{(\mathrm{m})} \underline{\ddot{U}}
\end{align*}
$$

To impose the boundary conditions, we use

$$
\begin{align*}
& {\left[\begin{array}{cc}
M_{a a} & M_{a b} \\
M_{b a} & M_{b b}
\end{array}\right]\left[\begin{array}{c}
\ddot{u}_{a} \\
\ddot{u}_{b}
\end{array}\right]+\left[\begin{array}{ll}
K_{a a} & K_{a b} \\
K_{b a} & K_{b b}
\end{array}\right]\left[\begin{array}{c}
U_{a} \\
U_{b}
\end{array}\right]} \\
& =\left[\begin{array}{l}
R_{a} \\
\underline{R}_{b}
\end{array}\right] \tag{4.38}\\
& M_{a a}{\underset{\sim}{u}}_{a}+K_{a a}{\underset{\sim}{u}}^{U_{a}}=R_{a}-\underline{K}_{a b} \underline{U}_{b}-M_{a b} \underline{U}_{b} \\
& \text { (4.39) } \\
& R_{b}=\underline{M}_{b a} \ddot{\ddot{u}}_{a}+\underline{M}_{b b} \ddot{U}_{b}+\underline{K}_{b a} \underline{U}_{a}+\underline{K}_{b b} \underline{U}_{b} \\
& \text { (4.40) }
\end{align*}
$$

Fig. 4.10. Transformation to skew boundary conditions

For the transformation on the total degrees of freedom we use

$$
\begin{equation*}
\underline{U}=\underline{I} \underline{U} \tag{4.41}
\end{equation*}
$$

so that

$$
\begin{equation*}
\underline{\bar{M}} \underline{\bar{U}}+\underline{\bar{K}} \underline{U}=\underline{\bar{R}} \tag{4.42}
\end{equation*}
$$

where

$$
\begin{equation*}
\underline{\bar{M}}=\underline{I}^{\top} \underline{M} \underline{I} ; \underline{\bar{K}}=I^{\top} \underline{K} \underline{I} ; \underline{\bar{R}}=\underline{T}^{\top} \underline{R} \tag{4.43}
\end{equation*}
$$

Fig. 4.11. Skew boundary condition imposed using spring element.

We can now also use this procedure (penalty method)
Say $\mathbf{U}_{\mathbf{i}}=\mathbf{b}$, then the constraint equation is

$$
\begin{equation*}
k U_{i}=k b \tag{4.44}
\end{equation*}
$$

where

$$
k \gg \bar{k}_{i i}
$$

Example analysis

Finite elements

Element
interpolation functions

Displacement and strain interpolation matrices:

$$
\begin{aligned}
& \underline{H}^{(1)}=\left[\begin{array}{lccc}
\left(1-\frac{y}{100}\right) & \frac{y}{100} & 0
\end{array}\right] \| V^{(m)}=\underline{H}^{(m)} \underline{U} \\
& \underline{H}^{(2)}=\left[\begin{array}{ccc}
(0 & \left(1-\frac{y}{80}\right) & \frac{y}{80}
\end{array}\right] \| \\
& \underline{B}^{(1)}=\left[\begin{array}{llll}
& -\frac{1}{100} & \frac{1}{100} & 0
\end{array}\right] \| \frac{\partial V}{\partial y}=\underline{B}^{(m)} \underline{U} \\
& \underline{B}^{(2)}=\left[\begin{array}{ccc}
(0 & -\frac{1}{80} & \frac{1}{80}
\end{array}\right]
\end{aligned}
$$

stiffness matrix

$$
\begin{aligned}
\underline{K}= & (1)(E) \int_{0}^{1 \rho 0}\left[\begin{array}{c}
-\frac{1}{100} \\
\frac{1}{100} \\
0
\end{array}\right]\left[\begin{array}{lll}
-\frac{1}{100} & \frac{1}{100} & 0
\end{array}\right] d y \\
& +E \int_{0}^{80}\left(1+\frac{y}{40}\right)^{2}\left[\begin{array}{c}
u \\
-\frac{1}{80} \\
\frac{1}{80}
\end{array}\right]\left[\begin{array}{lll}
0 & -\frac{1}{80} & \frac{1}{80}
\end{array}\right] d y
\end{aligned}
$$

Hence

$$
\begin{aligned}
\underline{K} & =\frac{E}{100}\left[\begin{array}{ccc}
1 & -1 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]+\frac{13 E}{240}\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & -1 & 1
\end{array}\right] \\
& =\frac{E}{240}\left[\begin{array}{ccc}
2.4 & -2.4 & 0 \\
-2.4 & 15.4 & -13 \\
0 & -13 & 13
\end{array}\right]
\end{aligned}
$$

Similarly for $\underline{M}, \underline{R}_{B}$, and so on.
Boundary conditions must still be imposed.

GENBRATIZED
 COORDINATE FINITE ELEMENT MODELS

LECTURE 4
57 MINUTES

LECTURE 4 Classification of problems; truss, plane stress, plane strain, axisymmetric, beam, plate and shell conditions; corresponding displacement, strain, and stress variables

Derivation of generalized coordinate models
One-, two-, three- dimensional elements, plate and shell elements

Example analysis of a cantilever plate, detailed derivation of element matrices

Lumped and consistent loading
Example results
Summary of the finite element solution process
Solution errors
Convergence requirements, physical explanations, the patch test

TEXTBOOK: Sections: 4.2.3, 4.2.4, 4.2.5, 4.2.6

Examples: 4.5, 4.6, 4.7, 4.8, 4.11, 4.12, 4.13, 4.14, 4.15, 4.16, 4.17, 4.18

DERIVATION OF SPECIFIC

FINITE ELEMENTS

- Generalized coordinate
finite element models
$\underline{K}^{(m)}=\int_{V^{(m)}} \underline{B}^{(m)^{\top}} \underline{C}^{(m)} \underline{B}^{(m)} d V{ }^{(m)} \underline{H}^{(m)}, \underline{B}^{(m)}, \underline{C}^{(m)}$
$B_{B}^{(m)}=\int_{V(m)} \underline{H}^{(m)^{T}} \underset{f}{ } B^{(m)} d V(m)$
$\underline{R}_{S}^{(m)}=\int_{S}(m) \underline{H}^{S^{(m)}} \underline{f}^{\top} S^{(m)} d S(m)$
- Convergence of analysis results
etc.

Across section A-A:
${ }^{{ }^{\tau} X X}$ is uniform.
Al1 other stress components
are zero.

Fig. 4.14. Various stress and strain conditions with illustrative examples.
(a) Uniaxial stress condition: frame under concentrated loads.

Fig. 4.14. (b) Plane stress conditions: membrane and beam under in-plane actions.

Fig. 4.14. (d) Axisymmetric condition:
τ_{38} cylinder under internal pressure.

Fig. 4.14. (e) Plate and shell structures.

Problem	Displacement Components
Bar	u
Beam	w
Plane stress	u, v
Plane strain	u, v
Axisymmetric	u, v
Three-dimensional	u, v, w
Plate Bending	w

Table 4.2 (a) Corresponding Kinematic and Static Variables in Various Problems.

Problem		Strain Vector $\underline{\underline{T}}^{\boldsymbol{T}}$	
Bar		[$\epsilon_{x x}$]	
Beam		[$\kappa_{x \times}$]	
Plane stress		$\left[\begin{array}{llll}\epsilon_{x x} & \epsilon_{y y} & \gamma_{\chi y}\end{array}\right]$	
Plane strain		$\left[\begin{array}{lll}\epsilon_{x x} & \epsilon_{y y} & \gamma_{x y}\end{array}\right]$	
Axisymmetric		$\left[\begin{array}{llll}\epsilon_{x x} & \epsilon_{y y} & \gamma_{x y} & \epsilon_{x y}\end{array}\right]$	
Three-dimensional Plate Bending		$\begin{array}{llll} \epsilon_{y y} & \epsilon_{x z} & \gamma_{x y} & \gamma_{y z} \\ {\left[\begin{array}{ll} \kappa_{x x} & \kappa_{y y} \end{array} \kappa_{x y}\right.} \end{array}$	$\left.\gamma_{1 x}\right]$

$$
\begin{aligned}
\text { Notation: } \epsilon_{x} & =\frac{\partial u}{\partial x}, \epsilon_{y}=\frac{\partial v}{\partial y}, \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}, \\
\ldots, \kappa_{x x} & =-\frac{\partial^{2} w}{\partial x^{2}}, \kappa_{y y}=-\frac{\partial^{2} w}{\partial y^{2}}, \kappa_{x y}=2 \frac{\partial^{2} w}{\partial x \partial y}
\end{aligned}
$$

Table 4.2 (b) Corresponding Kinematic and Static Variables in Various Problems.

Table 4.2 (c) Corresponding Kinematic and Static Variables in Various Problems.

Problem	Material Matrix \mathbb{C}
Bar	E
Beam	$\begin{array}{c}E I \\ \text { Plane Stress }\end{array}$
$1-v^{2}$	

v \& 1 \& 0

0 \& 0 \& \frac{1-v}{2}\end{array}\right]\)

Table 4.3 Generalized Stress-Strain Matrices for Isotropic Materials and the Problems in Table 4.2.

ELEMENT DISPLACEMENT EXPANSIONS:

For one-dimensional bar elements

$$
\begin{equation*}
u(x)=\alpha_{1}+\alpha_{2} x+\alpha_{3} x^{2}+\ldots \tag{4.46}
\end{equation*}
$$

For two-dimensional elements

$$
\begin{align*}
& u(x, y)=\alpha_{1}+\alpha_{2} x+\alpha_{3} y+\alpha_{4} x y+\alpha_{5} x^{2}+\ldots \\
& v(x, y)=\beta_{1}+\beta_{2} x+\beta_{3} y+\beta_{4} x y+\beta_{5} x^{2}+\ldots \tag{4.47}
\end{align*}
$$

For plate bending elements

$$
\begin{equation*}
w(x, y)=\gamma_{1}+\gamma_{2} x+\gamma_{3} y+\gamma_{4} x y+\gamma_{5} x^{2}+\ldots \tag{4.48}
\end{equation*}
$$

For three-dimensional solid elements

$$
\begin{align*}
& u(x, y, z)=\alpha_{7}+\alpha_{2} x+\alpha_{3} y+\alpha_{4} z+\alpha_{5} x y+\ldots \\
& v(x, y, z)=\beta_{1}+\beta_{2} x+\beta_{3} y+\beta_{4} z+\beta_{5} x y+\ldots \\
& w(x, y, z)=\gamma_{1}+\gamma_{2} x+\gamma_{3} y+\gamma_{4} z+\gamma_{5} x y+\ldots \tag{4.49}
\end{align*}
$$

Hence, in general

$$
\begin{align*}
& \underline{u}=\underline{\Phi} \underline{\alpha} \tag{4.50}\\
& \underline{\hat{u}}=\underline{A} \underline{\alpha} ; \underline{\alpha}=\underline{A}^{-1} \underline{\hat{u}} \tag{4.51/52}\\
& \underline{\epsilon}=\underline{E} \underline{\alpha} ; \underline{\tau}=\underline{C} \underline{\epsilon} \\
& \underline{H}=\underline{\Phi} \underline{A}^{-1} ; \underline{B}=\underline{E} \underline{A}^{-1}
\end{align*}
$$

Example

(a) Cantilever plate

(b) Finite element idealization

Fig. 4.5. Finite element plane stress analysis; i.e. $\tau_{Z Z Z}=\tau_{Z Y}=\tau_{Z X}=0$

Fig. 4.6. Typical two-dimensional four-node element defined in local coordinate system.

For element 2 we have

$$
\left[\begin{array}{l}
u(x, y) \\
v(x, y)
\end{array}\right]^{(2)}=\underline{H}^{(2)} \underline{U}
$$

where

$$
\underline{u}^{\top}=\left[\begin{array}{lllllll}
u_{1} & u_{2} & u_{3} & u_{4} & \ldots & u_{17} & u_{18}
\end{array}\right]
$$

To establish $\underline{H}^{(2)}$ we use:

$$
\begin{aligned}
& u(x, y)=\alpha_{1}+\alpha_{2} x+\alpha_{3} y+\alpha_{4} x y \\
& v(x, y)=\beta_{1}+\beta_{2} x+\beta_{3} y+\beta_{4} x y
\end{aligned}
$$

or

$$
\left[\begin{array}{l}
u(x, y) \\
v(x, y)
\end{array}\right]=\Phi \underline{\alpha}
$$

where

$$
\underline{\Phi}=\left[\begin{array}{ll}
\underline{\phi} & \underline{0} \\
\underline{0} & \underline{\phi}
\end{array}\right] ; \underline{\phi}=\left[\begin{array}{llll}
1 & x & y & x y
\end{array}\right]
$$

and

$$
\underline{\alpha}^{\top}=\left[\begin{array}{llllllll}
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{4} & \beta_{1} & \beta_{2} & \beta_{3} & \beta_{4}
\end{array}\right]
$$

Defining

$$
\underline{\hat{u}}^{\top}=\left[\begin{array}{llllllll}
u_{1} & u_{2} & u_{3} & u_{4} & v_{1} & v_{2} & v_{3} & v_{4}
\end{array}\right]
$$

we have

$$
\underline{\hat{u}}=\underline{A} \underline{\alpha}
$$

Hence

$$
\underline{H}=\underline{\Phi}^{-1}
$$

Hence

$$
\underline{H}=\left[\begin{array}{c:c:c:c}
\frac{1}{4}(1+x)(1+y) & 0 & \vdots \\
0 & \cdots & (1+x)(1+y) &]_{2 \times 8}
\end{array}{ }_{c: c}\right.
$$

and

$$
\begin{aligned}
& \begin{array}{llllllllll}
U_{1} & U_{2} & & u_{3} & v_{3} & u_{2} & v_{2} & & & u_{4} \\
U_{4} & U_{5} & U_{6} & U_{7} & U_{8} & U_{9} & U_{10}
\end{array} \\
& \underline{\mathbf{H}}^{(2)}=\left[\begin{array}{ll:ll:ll:ll:ll}
0 & 1 & 0 & H_{13} & H_{17} & H_{12} & H_{16} & 0 & 0 & H_{14} \\
0 & 0 & H_{23} & H_{27} & H_{22} & H_{26} & 0 & 0 & H_{24} & H_{28}
\end{array}\right. \text { : } \\
& u_{1} \quad v_{1} \text {-element degrees of freedom } \\
& \begin{array}{lllll}
U_{11} & U_{12} & U_{13} & U_{14} & U_{18-} \text { assemblage degrees }
\end{array} \\
& \left.: \begin{array}{ll:ll:l}
H_{11} & H_{15} & 0 & 0 & \ldots \text { zeros } \ldots \\
H_{21} & H_{25} & 0 & 0 & \ldots \text { zeros } \ldots
\end{array}\right] \text { of freedom } \\
& 2 \times 18
\end{aligned}
$$

Fig. 4.7. Pressure loading on element (m)

In plane-stress conditions the element strains are
$\underline{\epsilon}^{\top}=\left[\begin{array}{lll}\epsilon_{X X} & \epsilon_{Y Y} & \gamma_{X Y}\end{array}\right]$
where

$$
\epsilon_{x x}=\frac{\partial u}{\partial x} ; \epsilon_{y y}=\frac{\partial v}{\partial y} ; \gamma_{x y}=\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
$$

Hence

$$
\underline{B}=\underline{E} \underline{A}^{-1}
$$

where
$\underline{E}=\left[\begin{array}{llll:llll}0 & 1 & 0 & y & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & x \\ 0 & 0 & 1 & x & 0 & 1 & 0 & y\end{array}\right]$

ACTUAL PHYSICAL PROBLEM
GEOMETRIC DOMAIN
MATERIAL
LOADING
BOUNDARY CONDITIONS

MECHANICAL IDEALIZATION
 etc.
$\begin{aligned} \text { MATERIAL, e.g. } & \text { isotropic linear } \\ & \text { elastic } \\ & \text { Mooney-Rivlin rubber } \\ & \text { etc. }\end{aligned}$ etc.

LOADING, e.g. concentrated centrifugal etc.
BOUNDARY CONDITIONS, e.g. prescribed displacements etc.

YIELDS:
GOVERNING DIFFERENTIAL
EQUATIONS OF MOTION
e.g.
$\frac{\partial}{\partial x}\left(E A \frac{\partial u}{\partial x}\right)=-p(x)$

FINITE ELEMENT SOLUTION

CHOICE OF ELEMENTS AND
SOLUTION PROCEDURES

Fig. 4.23. Finite Element Solution Process

ERROR	ERROR OCCURRENCE IN	SECTION discussing error
DISCRETIZATION	use of finite element interpolations	4.2 .5
NUMERICAL INTEGRATION IN SPACE	evaluation of finite element matrices using numerical integration	$\begin{aligned} & 5.8 .1 \\ & 6.5 .3 \end{aligned}$
EVALUATION OF CONSTITUTIVE RELATIONS	use of nonlinear material models	6.4 .2
SOLUTION OF DYNAMIC EQUILIBRIUM EQUATIONS	direct time integration, mode superposition	$\begin{aligned} & 9.2 \\ & 9.4 \end{aligned}$
SOLUTION OF FINITE ELEMENT Equations by ITERATION	Gauss-Seidel, NewtonRaphson, Quasi-Newton methods, eigensolutions	$\begin{aligned} & 8.4 \\ & 8.6 \\ & 9.5 \\ & 10.4 \end{aligned}$
ROUND-0FF	setting-up equations and their solution	8.5

Table 4.4 Finite Element
Solution Errors

CONVERGENCE

Assume a compatible element layout is used, then we have monotonic convergence to the solution of the problemgoverning differential equation, provided the elements contain:

1) all required rigid body modes
2) all required constant strain states

no. of elements

If an incompatible element layout is used, then in addition every patch of elements must be able to represent the constant strain states. Then we have convergence but non-monotonic convergence.

(a) Rigid body modes of a plane stress element

Rigid body translation and rotation;

Fig. 4.24. Use of plane stress element in analysis of cantilever

Fig. 4.25 (a) Eigenvectors and eigenvalues of four-node plane stress element

Flexural mode $\lambda_{5}=0.57692$

Stretching mode $\boldsymbol{\lambda}_{7}=0.76923$

Shear mode $\lambda_{6}=0.76923$

Uniform extension mode $\boldsymbol{\lambda}_{\mathbf{8}}=1.92308$

Fig. 4.25 (b) Eigenvectors and eigenvalues of four-node plane stress element

Fig. 4.30 (a) Effect of displacement incompatibility in stress prediction
$\sigma_{y y}$ stress predicted by the incompatible element mesh:

Point	$\sigma_{y y}\left(\mathrm{~N} / \mathrm{m}^{2}\right)$
A	1066
B	716
C	359
D	1303
E	1303

Fig. 4.30 (b) Effect of displacement incompatibility in stress prediction

IMPLEMENTATION OF METHODS IN COMPUTER PROGRAMS; EXAMPLES SAP, ADINA

LECTURE 5
56 MINUTES

Implementation of methods in computer programs; examples SAP, ADNAA
LECTURE 5 Implementation of the finite element method
The computer programs SAP and ADINADetails of allocation of nodal point degrees offreedom, calculation of matrices, the assem-blage process
Example analysis of a cantilever plate
Out-of-core solution
Effective nodal-point numbering
Flow chart of total solution process
Introduction to different effective finite elementsused in one, two, three-dimensional, beam,plate and shell analyses
TEXTBOOK: Appendix A. Sections: 1.3, 8.2.3
Examples: A.1, A.2, A.3, A.4, Example Program STAP

IMPLEMENTATION OF

THE FINITE ELEMENT METHOD

$$
\underline{R}_{B}^{(m)}=\int_{V(m)} \underline{H}^{(m)^{\top}} \underline{f}^{(m)} d V^{(m)}
$$

We derived the equi-

librium equations

$$
\underline{\mathbf{K}} \underline{\mathbf{U}}=\underline{\mathbf{R}} ; \underline{\mathbf{R}}=\underline{\mathbf{R}}_{\mathbf{B}}+\ldots
$$

$\underline{K}=\sum_{m} \underline{K}^{(m)} ; \underline{R}_{B}=\sum_{m} \underline{R}_{B}^{(m)}$
$\begin{array}{lll}\mathbf{H}^{(m)} & B^{(m)} & N=n o . ~ o f ~ d . o . f .\end{array}$
In practice, we calculate compacted element matrices.

$$
\begin{array}{rll}
\underline{K} \\
n \times n & \underline{R}_{\mathbf{B}}, \cdots & n=\text { no. of } \\
n \times I & & \text { element d.o.f. }
\end{array}
$$

\underline{H}	\underline{B}
$k \times n$	$\ell \times n$

The stress analysis process can be understood to consist of essentially three phases:

1. Calculation of structure matrices
K, M, C, and R, whichever are applicable.
2. Solution of equilibrium equations.
3. Evaluation of element stresses.

The calculation of the structure matrices is performed as follows:

1. The nodal point and element information are read and/or generated.
2. The element stiffness matrices, mass and damping matrices, and equivalent nodal loads are calculated.
3. The structure matrices K, M, C , and R, whichever are applicable, are assembled.

Fig. A.1. Possible degrees of freedom at a nodal point.

Degree of freedom

Fig. A.2. Finite element cantilever idealization.

In this case the ID array is given by

$$
\text { ID }=\left[\begin{array}{lllllllll}
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

and then

$$
\mathbf{I D}=\left[\begin{array}{ccccccccc}
0 & 0 & 0 & 1 & 3 & 5 & 7 & 9 & 17 \\
0 & 0 & 0 & 2 & 4 & 6 & 8 & 10 & 12 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Also

$$
\left.\begin{array}{l}
X^{\top}=\left[\begin{array}{lllllllll}
0.0 & 0.0 & 0.0 & 60.0 & 60.0 & 60.0 & 120.0 & 120.0 & 120.0
\end{array}\right] \\
Y^{\top}=\left[\begin{array}{llrlrlrrr}
0.0 & 40.0 & 80.0 & 0.0 & 40.0 & 80.0 & 0.0 & 40.0 & 80.0
\end{array}\right] \\
Z^{\top}=\left[\begin{array}{lllllll}
0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 & 0.0 \\
0.0 & 0.0
\end{array}\right] \\
T^{\top}=\left[\begin{array}{lllllll}
70.0 & 85.0 & 100.0 & 70.0 & 85.0 & 100.0 & 70.0
\end{array} 85.0\right.
\end{array}\right]
$$

For the elements we have
Element 1: node numbers: 5,2,1,4; material property set: 1

Element 2: node numbers: 6,3,2,5; material property set: 1

Element 3: node numbers: 8,5,4,7; material property set: 2

Element 4: node numbers: 9,6,5,8; material property set: 2

CORRESPONDING COLUMN AND ROW NUMBERS

For compacted matrix
For \underline{K}_{1}

Similarly, we can obtain the LM arrays that correspond to the elements 2,3, and 4. We have for element 2 ,

$$
L M^{\top}=\left[\begin{array}{llllllll}
5 & 6 & 0 & 0 & 0 & 0 & 3 & 4
\end{array}\right]
$$

for element 3,

$$
L M^{\top}=\left[\begin{array}{llllllll}
9 & 10 & 3 & 4 & 1 & 2 & 7 & 8
\end{array}\right]
$$

and for element 4,

$$
L M^{\top}=\left[\begin{array}{llllllll}
11 & 12 & 5 & 6 & 3 & 4 & 9 & 10
\end{array}\right]
$$

ELEMENTS IN ORIGINAL STIFFNESS MATRIX
Fig. 10. Typical element pattern in a stiffness matrix using block storage.

ELEMENTS IN DECOMPOSED STIFFNESS MATRIX
Fig. 10. Typical element pattern in a stiffness matrix using block storage.

Fig. A.4. Bad and good nodal point numbering for finite element assemblage.

Fig. A.5. Flow chart of program STAP. *See Section 8.2.2.

Fig. 12. Truss element
p. A. 42 .

Fig. 13. Two-dimensional plane stress, plane strain and axisymmetric elements.
p..A.43.

Fig. 15. Three-dimensional beam element p A. 45 .

Fig. 16. Thin shell element (variable-number-nodes) p. A. 46 .

FORMULATION AND CALCULATION OF ISOPARAMETRIC MODELS

LECTURE 6
57 MINUTES

LECTURE 6 Formulation and calculation of isoparametric continuum elements

Truss, plane-stress, plane-strain, axisymmetric and three-dimensional elements

Variable-number-nodes elements, curved elements

Derivation of interpolations, displacement and strain interpolation matrices, the Jacobian transformation

Various examples; shifting of internal nodes to achieve stress singularities for fracture mechanics analysis

TEXTBOOK: Sections: 5.1, 5.2, 5.3.1, 5.3.3 5.5.1

Examples: 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10, 5.11, 5.12, 5.13, 5.14, 5.15, 5.16, 5.17

FORMULATION AND CALCULATION OF ISO-

PARAMETRIC FINITE

 ELEMENTSinterpolation matrices and element matrices

- We considered earlier (lecture 4) generalized coordinate finite element models
-We now want to discuss a more general approach to deriving the required
isoparametric elements

Isoparametric Elements
Basic Concept: (Continuum Elements)
Interpolate Geometry

$$
x=\sum_{i=1}^{N} h_{i} x_{i} ; y=\sum_{i=1}^{N} h_{i} y_{i} ; z=\sum_{i=1}^{N} h_{i} z_{i}
$$

Interpolate Displacements

$$
u=\sum_{i=1}^{N} h_{i} u_{i} \quad v=\sum_{i=1}^{N} h_{i} v_{i} \quad w=\sum_{i=1}^{N} h_{i} w_{i}
$$

$\mathbf{N}=$ number of nodes

1/D Element	Truss
2/D Elements	Plane stress Plane strain Axisymmetric Analysis
3/D Elements	Three-dimensional Thick Shell

(a) Truss and cable elements

Fig. 5.2. Some typical continuum elements

(c) Three-dimensional elements

Fig. 5.2. Some typical continuum elements

Consider special geometries first:

Truss, 2 units long

2/D element, 2×2 units
Similarly 3/D element $2 \times 2 \times 2$ units (r-s-t axes)

$$
1 \text { - D Element }
$$

2 Nodes:

Similarly

$$
\begin{aligned}
& h_{2}=1 / 4(1-r)(1+s) \\
& h_{3}=1 / 4(1-r)(1-s) \\
& h_{4}=1 / 4(1+r)(1-s)
\end{aligned}
$$

(a) Four to 9 variable-number-nodes two-dimensional element

Fig. 5.5. Interpolation functions of four to nine variable-number-nodes two-dimensional element.

(b) Interpolation functions

Fig. 5.5. Interpolation functions of four to nine variable-number-nodes two-dimensional element:

Having obtained the h_{i} we can construct the matrices \underline{H} and B :

- The elements of \underline{H} are the ${ }^{*} h_{i}$ (or zero)
- The elements of \underline{B} are the derivatives of the h_{i} (or zero),
Because for the $\mathbf{2 \times 2 \times 2}$ elements we can use
$x \equiv r$
$y \equiv s$
$z \equiv t$

EXAMPLE 4 node 2 dim. element

$$
\left[\begin{array}{l}
\varepsilon_{r r} \\
\varepsilon_{s s} \\
\gamma_{r s}
\end{array}\right]=\left[\begin{array}{cc:c:cc}
\frac{\partial h_{1}}{\partial r} & 0 & & \frac{\partial h_{4}}{\partial r} & 0 \\
0 & \frac{\partial h_{1}}{\partial s} & \ldots & 0 & \frac{\partial h_{4}}{\partial s} \\
\frac{\partial h_{1}}{\partial s} & \frac{\partial h_{1}}{\partial r} & & \frac{\partial h_{4}}{\partial s} & \frac{\partial h_{4}}{\partial r}
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
v_{1} \\
u_{2} \\
\vdots \\
v_{4}
\end{array}\right]
$$

$$
\text { We note again } \begin{aligned}
& \mathrm{r} \equiv \mathrm{x} \\
& \\
& \\
& s \equiv \mathrm{y}
\end{aligned}
$$

GENERAL ELEMENTS

Displacement and geometry interpolation as before, but
$\left[\begin{array}{c}\frac{\partial}{\partial r} \\ \frac{\partial}{\partial s}\end{array}\right]=\left[\begin{array}{ll}\frac{\partial x}{\partial r} & \frac{\partial y}{\partial r} \\ \frac{\partial x}{\partial s} & \frac{\partial y}{\partial s}\end{array}\right]\left[\begin{array}{c}\frac{\partial}{\partial x} \\ \frac{\partial}{\partial y}\end{array}\right]$
or

Aside: cannot use $\frac{\partial}{\partial x}=\frac{\partial}{\partial r} \quad \frac{\partial r}{\partial x}+\ldots$
$\frac{\partial}{\partial r}=\underline{J} \quad \frac{\partial}{\partial \underline{x}} \quad$ (in general)
$\frac{\partial}{\partial x}=J^{-1} \frac{\partial}{\partial r}$

Using (5.25) we can find the matrix
B of general elements
The \underline{H} and \underline{B} matrices are a function of r, s, t; for the integration thus use

$$
d v=\operatorname{det} \underline{J} d r d s d t
$$

Fig. 5.9. Some two-dimensional elements

Element 1

Element 2

1 cm
$\underline{J}=\left[\begin{array}{cc}3 & 0 \\ \frac{1}{2 \sqrt{3}} & \frac{1}{2}\end{array}\right]$

Element 3

$$
\underline{J}=\left[\begin{array}{ll}
4 & (1+s) \\
0 & (3+r)
\end{array}\right]
$$

Natural space

Actual physical space

Fig. 5.23. Quarter-point onedimensional element.

Here we have

$$
x=\sum_{i=1}^{3} h_{i} x_{i} \Rightarrow x=\frac{L}{4}(1+r)^{2}
$$

hence

$$
\underline{J}=\left[\frac{L}{2}+\frac{r}{2} L\right]
$$

and

$$
\underline{B}=\frac{1}{\frac{L}{2}+\frac{r}{2} L}\left[\begin{array}{lll}
h_{1, r} & h_{2, r} & h_{3, r}
\end{array}\right]
$$

or

$$
\underline{B}=\frac{1}{\frac{L}{2}+\frac{r}{2} L}\left[\left(-\frac{1}{2}+r\right)\left(\frac{1}{2}+r\right)-2 r\right]
$$

Since
$r=2 \sqrt{\frac{X}{L}}-1$
$\underline{B}=\left[\left(\frac{2}{L}-\frac{3}{2 \sqrt{L}} \frac{1}{\sqrt{x}}\right)\left(\frac{2}{L}-\frac{1}{2 \sqrt{L}} \frac{1}{\sqrt{x}}\right.\right.$

$$
\left.\left(\frac{2}{\sqrt{L} \sqrt{x}}-\frac{4}{L}\right)\right]
$$

We note
$\frac{1}{\sqrt{x}}$ singularity at $X=0$!

FORMULATION OF STRUCTURAL ELEMENTS

LECTURE 7
52 MINUTES

LECTURE 7 Formulation and calculation of isoparametric structural elements

Beam, plate and shell elements
Formulation using Mindlin plate theory and unified general continuum formulation

Assumptions used including shear deformations
Demonstrative examples: two-dimensional beam, plate elements

Discussion of general variable-number-nodes elements

Transition elements between structural and continuum elements

Low- versus high-order elements

TEXTBOOK: Sections: 5.4.1, 5.4.2, 5.5.2, 5.6.1
Examples: 5.20, 5.21, 5.22, 5.23, 5.24, 5.25, 5.26, 5.27

FORMULATION OF
STRUCTURAL ELEMENTS

- beam, plate and shell elements
- isoparametric approach for interpolations

Strength of Materials

Approach

- straight beam elements
use beam theory
including shear effects
- plate elements
use plate theory including shear effects
(Reissner/Mindlin)

Continuum
Approach

Use the general principle of virtual displacements, but
-- exclude the stress components not applicable
-- use kinematic constraints for particles on sections originally normal to the midsurface
" particles remain on a straight line during deformation"

Boundary conditions between beam elements

Deformation of cross-section

$$
\left.w\right|_{x^{-0}}=\left.w\right|_{x}+0 ;\left.\frac{d w}{d x}\right|_{x^{-0}}=\left.\frac{d w}{d x}\right|_{x}+0
$$

a) Beam deformations excluding shear effect

Fig. 5.29. Beam deformation mechanisms

Deformation of cross-section

$\left.w\right|_{x^{-0}}=\left.w\right|_{x}+0$

$$
\left.\beta\right|_{x^{-0}}=\left.\beta\right|_{x^{+0}}
$$

Boundary conditions between beam elements
b) Beam deformations including shear effect

Fig. 5.29. Beam deformation mechanisms

We use

$$
\begin{align*}
\beta= & \frac{d w}{d x}-\gamma \tag{5.48}\\
\tau & =\frac{V}{A_{S}} ; \gamma=\frac{\tau}{G} ; k=\frac{A_{S}}{A} \tag{5.49}\\
\Pi & =\frac{E I}{2} \int_{0}^{L}\left(\frac{d B}{d x}\right)^{2} d x+\frac{G A k}{2} \int_{0}^{L}\left(\frac{d w}{d x}-\beta\right)^{2} d x \\
& \quad \int_{0}^{L} p w d x-\int_{0}^{L} m \beta d x \tag{5.50}
\end{align*}
$$

$$
\begin{align*}
E I & \int_{0}^{L}\left(\frac{d \beta}{d x}\right) \delta\left(\frac{d \beta}{d x}\right) d x \\
& +G A k \int_{0}^{L}\left(\frac{d w}{d x}-\beta\right) \delta\left(\frac{d w}{d x}-\beta\right) d x \\
& -\int_{0}^{L} p \delta w d x-\int_{0}^{L} m \delta \beta d x=0 \tag{5.51}
\end{align*}
$$

(a) Beam with applied loading
$\mathrm{E}=$ Young's modulus, $\mathrm{G}=$ shear modulus
$k=\frac{5}{6}, A=a b, I=\frac{a b^{3}}{12}$

Fig. 5.30. Formulation of twodimensional beam element

(b) Two, three-and four-node models; $\theta_{\mathrm{i}}=\beta_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{q} \quad$ (Interpolation functions are given in Fig. 5.4)

Fig. 5.30. Formulation of twodimensional beam element

The interpolations are now

$$
\begin{align*}
& w=\sum_{i=1}^{q} h_{i} w_{i} ; \beta=\sum_{i=1}^{q} h_{i} \theta_{i} \tag{5.52}\\
& w=\underline{-}_{W} \underline{U} ; \quad \beta=\underline{H}_{\beta} \underline{U} \\
& \frac{\partial w}{\partial x}=\underline{B}_{W} \underline{U} ; \quad \frac{\partial \beta}{\partial x}=\underline{B}_{\beta} \underline{U}
\end{align*}
$$

(5.53)

Where

$$
\begin{align*}
& \underline{U}^{\top}=\left[\begin{array}{llllll}
w_{1} & \ldots & w_{q} & \theta_{1} & \ldots & \theta_{q}
\end{array}\right] \\
& \underline{H}_{W}=\left[\begin{array}{lllllll}
h_{1} & \ldots & h_{q} & 0 & \ldots & 0
\end{array}\right] \\
& \underline{H}_{\beta}=\left[\begin{array}{lllllll}
0 & \ldots & 0 & h_{1} & \ldots & h_{q}
\end{array}\right] \tag{5.54}
\end{align*}
$$

and

$$
\left.\begin{array}{l}
\underline{B}_{W}=J^{-1}\left[\begin{array}{llll}
\frac{\partial h_{1}}{\partial r} & \ldots & \frac{\partial h_{q}}{\partial r} & 0
\end{array} \ldots 0\right.
\end{array}\right]
$$

So that

$$
\begin{aligned}
\underline{K}= & E I \int_{-1}^{1} \frac{B}{\beta}_{T}^{B_{\beta}} \operatorname{det} J d r \\
& +G A k \int_{-1}^{1}\left(\underline{B}_{W}-\underline{H}_{\beta}\right)^{\top}\left(\underline{B}_{W}-\underline{H}_{\beta}\right) \operatorname{det} J d r
\end{aligned}
$$

and

$$
\begin{align*}
\underline{R}= & \int_{-1}^{1} \underline{H}_{W}^{\top} p \operatorname{det} J d r \\
& +\int_{-1}^{1} \underline{H}_{\beta}^{\top} m \operatorname{det} J d r \tag{5.57}
\end{align*}
$$

Considering the order of interpolations required, we study

$$
\begin{gather*}
I=\int_{0}^{L}\left(\frac{d B}{d x}\right)^{2} d x+\alpha \int_{0}^{L}\left(\frac{d w}{d x}-\beta\right)^{2} d x ; \\
\alpha=\frac{G A k}{E I} \tag{5.60}
\end{gather*}
$$

Hence

- use parabolic (or higher-order) elements
- discrete Kirchhoff theory
- reduced numerical integration

Here we use

$$
\begin{align*}
& \ell_{x}(r, s, t)=\sum_{k=1}^{q} h_{k} \ell_{x_{k}}+\frac{t}{2} \sum_{k=1}^{q} a_{k} h_{k} \ell^{\ell} v_{t x}^{k} \\
& +\frac{s}{2} \sum_{k=1}^{q} b_{k} h_{k}{ }^{\ell} v_{s x} \\
& \ell_{y}(r, s, t)=\sum_{k=1}^{q} h_{k} \ell^{\ell} y_{k}+\frac{t}{2} \sum_{k=1}^{q} a_{k} h_{k} \ell_{t y}^{k} \\
& +\frac{s}{2} \sum_{k=1}^{q} b_{k} h_{k}^{l} v_{s y}^{k} \tag{5.61}\\
& \ell_{z(r, s, t)}=\sum_{k=1}^{q} h_{k} \ell_{z_{k}}+\frac{t}{2} \sum_{k=1}^{q} a_{k} h_{k} \ell_{t z}^{k} \\
& +\frac{s}{2} \sum_{k=1}^{q} b_{k} h_{k} \ell_{v} v_{s z}^{k}
\end{align*}
$$

So that
$u(r, s, t)={ }^{1} x-{ }^{0} x$
$v(r, s, t)={ }^{1} y-0^{0}$
$w(r, s, t)={ }^{1} z-0_{z}$
and

$$
\begin{align*}
u(r, s, t)= & \sum_{k=1}^{q} h_{k} u_{k}
\end{align*}+\frac{t}{2} \sum_{k=1}^{q} a_{k} h_{k} v_{t x}^{k}, ~+\frac{s}{2} \sum_{k=1}^{q} b_{k} h_{k} v_{s x}^{k} .
$$

Finally, we express the vectors \underline{V}_{t}^{k} and \underline{v}_{s}^{k} in terms of rotations about the Cartesian axes x, y, z,

$$
\begin{align*}
& \underline{v}_{t}^{k}=\underline{\theta}_{k} \times{ }^{0} \underline{v}_{t}^{k} \\
& \underline{v}_{s}^{k}=\theta_{k} \times{ }^{0}{ }_{s}^{k} \tag{5.65}
\end{align*}
$$

where

$$
\hat{\theta}_{k}=\left[\begin{array}{c}
\theta_{k}^{k} \tag{5.66}\\
\theta_{y}^{k} \\
\theta_{z}^{k}
\end{array}\right]
$$

We can now find

$$
\left[\begin{array}{l}
\varepsilon_{n \eta} \tag{5.67}\\
\gamma_{n \xi} \\
\gamma_{n \zeta}
\end{array}\right]=\sum_{k=1}^{q} B_{k} u_{k}
$$

where

$$
\begin{equation*}
u_{k}^{\top}=\left[u_{k} v_{k} w_{k} \theta_{x}^{k} \theta_{y}^{k} \theta_{z}^{k}\right] \tag{5.68}
\end{equation*}
$$

and then also have

$$
\left[\begin{array}{c}
\tau_{n \eta} \tag{5.77}\\
\tau_{n \xi} \\
\tau_{n \zeta}
\end{array}\right]=\left[\begin{array}{ccc}
E & 0 & 0 \\
0 & G k & 0 \\
0 & 0 & G k
\end{array}\right]\left[\begin{array}{c}
\varepsilon_{n \eta} \\
\gamma_{n \xi} \\
\gamma_{n \zeta}
\end{array}\right]
$$

Fig. 5.36. Deformation mechanisms in analysis of plate including shear deformations

Hence

$$
\begin{align*}
& {\left[\begin{array}{l}
\varepsilon_{x x} \\
\varepsilon_{y y} \\
\gamma_{x y}
\end{array}\right]=z\left[\begin{array}{c}
\frac{\partial \beta_{x}}{\partial x} \\
-\frac{\partial \beta_{y}}{\partial y} \\
\frac{\partial \beta_{x}}{\partial y}-\frac{\partial \beta_{y}}{\partial x}
\end{array}\right]} \tag{5.79}\\
& {\left[\begin{array}{c}
\gamma_{y z} \\
\gamma_{z x}
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial w}{\partial y}-\beta_{y} \\
\frac{\partial w}{\partial x}+\beta_{x}
\end{array}\right]} \tag{5.80}
\end{align*}
$$

and
$\left[\begin{array}{c}\tau_{x x} \\ \tau_{y y} \\ \tau_{x y}\end{array}\right]=z \frac{E}{1-\nu^{2}}\left[\begin{array}{lll}1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & \frac{l-\nu}{2}\end{array}\right]\left[\begin{array}{l}\frac{\partial \beta_{x}}{\partial x} \\ -\frac{\partial \beta_{y}}{\partial y} \\ \frac{\partial \beta_{x}}{\partial y}-\frac{\partial \beta_{y}}{\partial x}\end{array}\right]$

$$
\left[\begin{array}{c}
\tau_{y z} \tag{5.82}\\
\tau_{z x}
\end{array}\right]=\frac{E}{2(1+\nu)}\left[\begin{array}{c}
\frac{\partial w}{\partial y}-\beta_{y} \\
\frac{\partial w}{\partial x}+\beta_{x}
\end{array}\right]
$$

The total potential for the element is:

$$
\begin{array}{r}
\pi=\frac{1}{2} \int_{A} \int_{-h / 2}^{h / 2}\left[\begin{array}{lll}
\varepsilon_{x x} & \varepsilon_{y y} & \gamma_{x y}
\end{array}\right]\left[\begin{array}{c}
\tau_{x x} \\
\tau_{y y} \\
\tau_{x y}
\end{array}\right] d z d A \\
+\frac{k}{2} \int_{A} \int_{-h / 2}^{h / 2}\left[\begin{array}{ll}
\gamma_{y z} & \gamma_{z x}
\end{array}\right]\left[\begin{array}{c}
\tau_{y z} \\
\tau_{z x}
\end{array}\right] d x d A \\
\end{array} \begin{array}{r}
-\int_{A}^{w} p d A
\end{array}
$$

or performing the integration through the thickness

$$
\begin{align*}
I=\frac{1}{2} \int_{A} \underline{K}^{\top} C_{b} \underline{K} d A & +\frac{1}{2} \int_{A}^{\underline{\gamma}} \underline{C}_{s} \underline{\gamma} d A \\
& -\int_{A} w p d A \tag{5.84}
\end{align*}
$$

where

$$
\begin{align*}
& \underline{k}=\left[\begin{array}{l}
\frac{\partial \beta_{x}}{\partial x} \\
-\frac{\partial \beta_{y}}{\partial y} \\
\frac{\partial \beta_{x}}{\partial y}-\frac{\partial \beta_{y}}{\partial x}
\end{array}\right] ; \underline{r}=\left[\begin{array}{l}
\frac{\partial w}{\partial y}-\beta_{y} \\
\frac{\partial w}{\partial x}+\beta_{x}
\end{array}\right](5 \\
& \underline{c_{b}}=\frac{E^{3}}{12\left(1-v^{2}\right)}\left[\begin{array}{lll}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right] ; \\
& \underline{c}_{s}=\frac{E h k}{2(1+v)}\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \tag{5.87}
\end{align*}
$$

Using the condition $\delta \Pi=0$ we obtain the principle of virtual displacements for the plate element.

$$
\begin{align*}
\int_{A}^{\delta \underline{K}^{T}} \underline{C}_{b} \underline{K} d A & +\int_{A}^{\delta} \underline{\gamma}^{T} C_{-} \underline{\gamma} d A \\
& -\int_{A} \delta w p d A=0 \tag{5.88}
\end{align*}
$$

We use the interpolations

$$
\begin{align*}
& w=\sum_{i=1}^{q} h_{i} w_{i} ; \beta_{x}=\sum_{i=1}^{q} h_{i} \theta_{y}^{i} \\
& \beta_{y}=\sum_{i=1}^{q} h_{i} \theta_{x}^{i} \tag{5.89}
\end{align*}
$$

and

$$
x=\sum_{i=1}^{q} h_{j} x_{i} ; y=\sum_{i=1}^{q} h_{i} y_{i}
$$

For shell elements we proceed as in the formulation of the general beam elements,
$\ell_{x}(r, s, t)=\sum_{k=1}^{q} h_{k}{ }^{\ell} x_{k}+\frac{t}{2} \sum_{k=1}^{q} a_{k} h_{k} \ell_{n x}^{k}$
$\ell_{y}(r, s, t)=\sum_{k=1}^{q} h_{k} \ell y_{k}+\frac{t}{2} \sum_{k=1}^{q} a_{k} h_{k} \ell_{n y}^{k}$
$\ell_{z(r, s, t)}=\sum_{k=1}^{q} h_{k} \ell_{z_{k}}+\frac{t}{2} \sum_{k=1}^{q} a_{k} h_{k} \ell_{n z}^{k}$

Therefore,

$$
\begin{align*}
& u(r, s, t)=\sum_{k=1}^{q} h_{k} u_{k}+\frac{t}{2} \sum_{k=1}^{q} a_{k} h_{k} v_{n x}^{k} \\
& v(r, s, t)=\sum_{k=1}^{q} h_{k} v_{k}+\frac{t}{2} \sum_{k=1}^{q} a_{k} h_{k} v_{n y}^{k} \\
& w(r, s, t)=\sum_{k=1}^{q} h_{k} w_{k}+\frac{t}{2} \sum_{k=1}^{q} a_{k} h_{k} v_{n z}^{k} \tag{5.91}
\end{align*}
$$

where

$$
\begin{equation*}
v_{n}^{k}={ }^{l} v_{n}^{k}-{ }^{0} v_{-n}^{k} \tag{5.92}
\end{equation*}
$$

To express \underline{v}_{n}^{k} in terms of
rotations at the nodal - point k
we define

$$
\begin{align*}
& { }_{\underline{v}}^{-1} \tag{5.93a}\\
& =\left(\underline{e}_{y} \times \underline{v}_{-n}^{k}\right) /\left|\underline{e}_{y} \times{ }^{0} \underline{v}_{n}^{k}\right| \tag{5.93b}\\
& { }^{0} \underline{v}_{-2}^{k}={ }^{0} \underline{v}_{n}^{k} \times \underline{v}_{1}^{k}
\end{align*}
$$

then

$$
\begin{equation*}
\underline{v}_{-n}^{k}=-\underline{v}_{2}^{0} \alpha_{k}+{ }_{-1}^{v_{1}^{k}} \beta_{k} \tag{5.94}
\end{equation*}
$$

Formulation of structural elements

Finally, we need to recognize the use of the following stress - strain law

$$
\left.\begin{array}{l}
\underline{\tau}=C_{s h} \underline{\varepsilon} \tag{5.100}\\
\underline{\varepsilon}^{\top}=\left[\begin{array}{lllll}
\varepsilon_{x x} & \varepsilon_{y y} & \varepsilon_{z z} & \gamma_{x y} & \gamma_{y z}
\end{array} \gamma_{z x}\right.
\end{array}\right]
$$

$C_{S h}=Q_{s h}^{\top}\left(\frac{E}{1-\nu^{2}}\left[\begin{array}{cccccc}1 & \nu & 0 & 0 & 0 & 0 \\ & 1 & 0 & 0 & 0 & 0 \\ & & 0 & 0 & 0 & 0 \\ & & & \frac{1-\nu}{2} & 0 & 0 \\ & & & \frac{1-\nu}{2} & 0 \\ \text { symmetric } & & & & \frac{1-\nu}{2}\end{array}\right]\right) \frac{Q}{s h}$

16 - node parent element with cubic interpolation

Some derived elements:

Variable - number - nodes shell element

Fig. 5.39. Use of shell transition elements

NUMERICAL INTEGRATIONS, MODELING CONSIDERATIONS

LECTURE 8
47 MINUTES

LECTURE 8 Evaluation of isoparametric element matrices Numercial integrations, Gauss, Newton-Cotes formulas

Basic concepts used and actual numerical operations performed

Practical considerations
Required order of integration, simple examples
Calculation of stresses
Recommended elements and integration orders for one-, two-, three-dimensional analysis, and plate and shell structures

Modeling considerations using the elements. 5.35, 5.36, 5.37, 5.38, 5.39

NUMERICAL INTEGRATION SOME MODELING CONSIDERATIONS

- Newton-Cotes formulas
- Gauss integration
- Practical considerations
- Choice of elements

We had

$$
\begin{equation*}
\underline{K}=\int_{V} \underline{B}^{T} \underline{C} \underline{B} d V \tag{4.29}
\end{equation*}
$$

$\underline{M}=\int_{V} \rho \underline{H}^{\top} \underline{H} d V \quad$ (4.30)
$R_{B}=\int_{V} \underline{H}^{\top} \underline{f}^{B} d V \quad$ (4.31)
$\underline{R}_{S}=\int_{S} \underline{H}^{S^{\top}} \underline{f}^{S} d S$ (4.32)
$\underline{R}_{I}=\int_{V} \underline{B}^{T} \underline{T}^{I} d V$ (4.33)

In isoparametric finite element analysis we have:

> - the displacement interpolation
> matrix $\underline{H}(r, s, t)$
> -the strain-displacement
> interpolation matrix $B(r, s, t)$
> Where r, s, t vary from -1 to +1.

Hence we need to use:
$d V=\operatorname{det} \underline{J} d r d s d t$

Hence, we now have, for example in two-dimensional analysis:

$$
\begin{aligned}
& \underline{K}=\int_{-1}^{+1} \int_{-1}^{+1} \underline{B}^{\top} \underline{C} \underline{B} \operatorname{det} \underline{J} d r d s \\
& \underline{M}=\int_{-1}^{+1} \int_{-1}^{+1} \rho \underline{H}^{\top} \underline{H} \operatorname{det} \underline{J} d r d s
\end{aligned}
$$

etc...

The evaluation of the integrals is carried out effectively using numerical integration, e.g.:

$$
\underline{k}=\sum_{i} \sum_{j} \alpha_{i j} \underline{F}_{i j}
$$

where
i, j denote the integration points
$\alpha_{i j}=$ weight coefficients
$\underline{E}_{i j}=\underline{B}_{i j}^{\top} \underline{\mathbf{C}} \underline{B}_{i j} \operatorname{det} \underline{J}_{i j}$

2x2-point integration

Consider one-dimensional integration and the concept of an interpolating polynomial.

In Newton - Cotes integration we use sampling points at equal distances, and

$$
\begin{equation*}
\int_{a}^{b} F(r) d r=(b-a) \sum_{i=0}^{n} c_{i}^{n} F_{i}+R_{n} \tag{5.123}
\end{equation*}
$$

$n=$ number of intervals
$C_{i}{ }^{\mathbf{n}}=$ Newton - Cotes constants
interpolating polynomial is of order n .

Number of Intervals \boldsymbol{n}	C_{0}^{n}	C_{1}	C_{2}	C^{n}	C_{4}^{n}	C_{5}	C_{6}	Upper Bound on Error $\boldsymbol{R}_{\mathrm{n}}$ as a Function of the Derivative of F
1	$\frac{1}{2}$	$\frac{1}{2}$						$10^{-1}(b-a)^{3} F^{11}(r)$
2	$\frac{1}{6}$	$\frac{4}{6}$	$\frac{1}{6}$					$10^{-3}(b-a)^{5} F^{\text {iv }}(r)$
3	$\frac{1}{8}$	$\frac{3}{8}$	$\frac{3}{8}$	$\frac{1}{8}$				$10^{-3}(b-a)^{5} F^{\text {viv }}(r)$
4	$\frac{7}{90}$	$\frac{32}{90}$	$\frac{12}{90}$	$\frac{32}{90}$	$\frac{7}{90}$			$10^{-6}(b-a)^{7} F^{\mathrm{V}}(r)$
5	$\frac{19}{288}$	$\frac{75}{288}$	$\frac{50}{288}$	$\frac{50}{288}$	$\frac{75}{288}$	$\frac{19}{288}$		$10^{-6}(b-a)^{7 F^{1}(r)}$
6	$\frac{41}{840}$	$\frac{216}{840}$	$\frac{27}{840}$	$\frac{272}{840}$	$\frac{27}{840}$	$\frac{216}{840}$	$\frac{41}{840}$	$10^{-9}(b-a)^{9} F^{\text {virI }}(r)$

Table 5.1. Newton-Cotes numbers and error estimates.

In Gauss numerical integration we use

$$
\begin{align*}
\int_{a}^{b} F(r) d r & =\alpha_{1} F\left(r_{1}\right)+\alpha_{2} F\left(r_{2}\right)+\ldots \\
& +\alpha_{n} F\left(r_{n}\right)+R_{n} \quad 15.124 \tag{5.124}
\end{align*}
$$

where both the weights $\alpha_{1} \ldots, \alpha_{n}$ and the sampling points r_{1}, \ldots, r_{n} are variables.

The interpolating polynomial is now of order 2n-1.

n	r_{i}			α_{t}		
1	0. (15 zeros)			2. (15 zeros)		00000
2	± 0.57735	02691	89626	1.00000	00000	
3	± 0.77459	66692	41483	0.55555	55555	55556
	0.00000	00000	00000	0.88888	88888	88889
4	± 0.86113	63115	94053	0.34785	48451	37454
	± 0.33998	10435	84856	0.65214	51548	62546
5	± 0.90617	98459	38664	0.23692	68850	56189
	± 0.53846	93101	05683	0.47862	86704	99366
	0.00000	00000	00000	0.56888	88888	88889
6	± 0.93246	95142	03152	0.17132	44923	79170
	± 0.66120	93864	66265	0.36076	15730	48139
	± 0.23861	91860	83197	0.46791	39345	72691

Table 5.2. Sampling points and weights in Gauss-Legendre numerical integration.

Now let,
$\mathbf{r}_{\mathbf{i}}$ be a sampling point and
α_{i} be the corresponding weight
for the interval -1 to +1 .
Then the actual sampling point and weight for the interval \mathbf{a} to \mathbf{b} are

$$
\frac{a+b}{2}+\frac{b-a}{2} r_{i} \text { and } \frac{b-a}{2} \alpha_{i}
$$

and the r_{i} and α_{i} can be
tabulated as in Table 5.2.

In two- and three-dimensional analysis we use

$$
\begin{equation*}
\int_{-1}^{+1} \int_{-1}^{+1} F(r, s) d r d s=\sum_{i} \alpha_{i} \int_{-1}^{+1} F\left(r_{i}, s\right) d s \tag{5.131}
\end{equation*}
$$

or

$$
\begin{equation*}
\int_{-1}^{+1} \int_{-1}^{+1} F(r, s) d r d s=\sum_{i, j} \alpha_{i} \alpha_{j} F\left(r_{i}, s_{j}\right) \tag{5.132}
\end{equation*}
$$

and corresponding to (5.113),
$\alpha_{i j}=\alpha_{i} \alpha_{j}$, where α_{i} and α_{j} are the integration weights for one-dimensional integration.
Similarly,

$$
\begin{align*}
& \int_{-1}^{+1} \int_{-1}^{+1} \int_{-1}^{+1} F(r, s, t) d r d s d t \\
& =\sum_{i, j, k} \alpha_{i} \alpha_{j} \alpha_{k} F\left(r_{i}, s_{j}, t_{k}\right) \tag{5.133}\\
& \text { and } \alpha_{i j k}=\alpha_{i} \alpha_{j} \alpha_{k} .
\end{align*}
$$

Practical use of numerical integration

- The integration order required to evaluate a specific element matrix exactly can be evaluated by studying the function F to be integrated.
- In practice, the integration is frequently not performed exactly, but the integration order must be high enough.

Considering the evaluation of the element matrices, we note the following requirements:
a) stiffness matrix evaluation:
(1) the element matrix does not contain any spurious zero energy modes (i.e., the rank of the element stiffness matrix is not smaller than evaluated exactly); and
(2) the element contains the required constant strain states.
b) mass matrix evaluation:
the total element mass must be included.
c) force vector evaluations:
the total loads must be included.

Fig. 5.46. 8 - node plane stress element supported at B by a spring.

Stress calculations

$$
\begin{equation*}
\underline{=} \underline{C} \underline{B} \underline{U}+\underline{\tau}^{I} \tag{5.136}
\end{equation*}
$$

- stresses can be calculated at any point of the element.
- stresses are, in general, discontinuous across element boundaries.

(a) Cantilever subjected to bending moment and finite element solutions.

Fig. 5.47. Predicted longitudinal stress distributions in analysis of cantilever.

Fig. 5.47. Predicted longitudinal stress distributions in analysis of cantilever.

Some modeling considerations

We need

- a qualitative knowledge of the response to be predicted
- a thorough knowledge of the principles of mechanics and the finite element procedures available
- parabolic/undistorted elements usually most effective

Table 5.6 Elements usually effective in analysis.

TYPE OF PROBLEM	ELEMENT
TRUSS OR CABLE	2-node
TWO-DIMENSIONAL	
PLANE STRESS	
PLANE STRAIN	
AXISYMMETRIC	
9-node or	
THREE-DIMENSIONAL	
3-node or	
2-node	

9-node

SHELL
9-node or
16-node

a) 4-node to 8 -node element transition region

b) 4- node to $\mathbf{4}$ - node element transition

c) 8 -node to finer $\mathbf{8}$ - node element layout transition region

Fig. 5.49. Some transitions with compatible element layouts

SOLUTION OF FINITE ELEMENT EQUILIBRIUM EQUATIONS IN STATIC ANALYSIS

LECTURE 9
60 MINUTES

LECTURE 9 Solution of finite element equations in static analysis

Basic Gauss elimination

Static condensation
Substructuring
Multi-level substructuring
Frontal solution
L D LT - factorization (column reduction scheme) as used in SAP and ADINA

Cholesky factorization
Out-of-core solution of large systems
Demonstration of basic techniques using simple examples

Physical interpretation of the basic operations used

TEXTBOOK: Sections: 8.1, 8.2.1, 8.2.2, 8.2.3, 8.2.4,
Examples: 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 8.10

SOLUTION OF

 EQUILIBRIUMEQUATIONS IN
STATIC ANALYSIS

$$
\underline{\mathbf{K}} \underline{\mathbf{U}}=\underline{\mathbf{R}}
$$

- Iterative methods, e.g. Gauss-Seidel
- Direct methods
these are basically
variations of
Gauss elimination

THE BASIC GAUSS ELIMINATION PROCEDURE

Consider the Gauss elimination solution of
$\left[\begin{array}{cccc}5 & -4 & 1 & 0 \\ -4 & 6 & -4 & 1 \\ 1 & -4 & 6 & -4 \\ 0 & 1 & -4 & 5\end{array}\right]\left[\begin{array}{l}U_{1} \\ U_{2} \\ U_{3} \\ U_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$ (8.2)

STEP 1: Subtract a multiple of equation 1 from equations 2 and 3 to obtain zero elements in the first column of K .
$\left[\begin{array}{cccc}5 & -4 & 1 & 0 \\ 0 & \frac{14}{5}-\frac{16}{5} & 1 \\ 0 & -\frac{16}{5} & \frac{29}{5} & -4 \\ 0 & 1 & -4 & 5\end{array}\right]\left[\begin{array}{l}U_{1} \\ U_{2} \\ U_{3} \\ U_{4}\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$ (8.3)
$\left[\begin{array}{cc:cc}5 & -4 & 1 & 0 \\ 0 & \frac{14}{5} & -\frac{16}{5} & 1 \\ 0 & 0 & \frac{15}{7} & -\frac{20}{7} \\ 0 & 0 & -\frac{20}{7} & \frac{65}{14}\end{array}\right]\left[\begin{array}{l}U_{1} \\ U_{2} \\ U_{3} \\ U_{4}\end{array}\right]=\left[\begin{array}{c}0 \\ 1 \\ \frac{8}{7} \\ -\frac{5}{14}\end{array}\right]$ (8.4)

STEP 3:

$$
\left[\begin{array}{cccc}
5 & -4 & 1 & 0 \tag{8.5}\\
0 & \frac{14}{5} & -\frac{16}{5} & 1 \\
0 & 0 & \frac{15}{7} & -\frac{20}{7} \\
0 & 0 & 0 & \frac{5}{6}
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3} \\
U_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
\frac{8}{7} \\
\frac{7}{6}
\end{array}\right]
$$

Now solve for the unknowns U_{4},
$\mathrm{U}_{3}, \mathrm{U}_{2}$ and U_{1} :

$$
\begin{align*}
& U_{4}=\frac{\frac{7}{6}}{\frac{5}{6}}=\frac{7}{5} ; \quad U_{3}=\frac{\frac{8}{7}-\left(-\frac{20}{7}\right) U_{4}}{\frac{15}{7}}=\frac{12}{5} \\
& U_{2}=\frac{1-\left(-\frac{16}{5}\right) U_{3}-(1) U_{4}}{\frac{14}{5}}=\frac{13}{5} \tag{8.6}\\
& U_{1}=\frac{0-(-4) \frac{19}{35}-(1) \frac{36}{15}-(0) \frac{7}{5}}{5}=\frac{8}{5}
\end{align*}
$$

STATIC CONDENSATION

Partition matrices into

$$
\left[\begin{array}{ll}
\underline{K}_{a a} & \underline{K}_{a c} \tag{8.28}\\
\underline{K}_{c a} & \underline{K}_{c c}
\end{array}\right]\left[\begin{array}{l}
\underline{U}_{a} \\
\underline{U}_{c}
\end{array}\right]=\left[\begin{array}{l}
\underline{R}_{a} \\
\underline{R}_{c}
\end{array}\right]
$$

Hence

$$
\underline{U}_{c}=\underline{K}_{c c}^{-1}\left(\underline{R}_{c}-\underline{K}_{c a} \underline{U}_{a}\right)
$$

and

$$
\frac{\left(\underline{K}_{a \mathrm{a}}-\underline{K}_{a c} K_{c c}^{-1}-K_{c a}\right)}{\underline{K}_{a a}} \underline{U}_{a}=R_{a}-K_{a c} \underline{K}_{c c}^{-1} \underline{R}_{c}
$$

Example

Hence (8.30) gives

$$
\left.\left.\bar{K}_{\mathrm{aa}}=\left[\begin{array}{ccc}
6 & -4 & 1 \\
-4 & 6 & -4 \\
1 & -4 & 5
\end{array}\right]-\left[\begin{array}{c}
-4 \\
1 \\
0
\end{array}\right] \begin{array}{lll}
{[1 / 5]}
\end{array} \begin{array}{lll}
-4 & 1 & 0
\end{array}\right] \quad \begin{array}{ccc}
1 & -4 & 5
\end{array}\right]
$$

$$
\left[\begin{array}{rrrr}
5 & -4 & 1 & 0 \\
-4 & 6 & -4 & 1 \\
1 & -4 & 6 & -4 \\
0 & 1 & -4 & 5
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3} \\
U_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{rrr}
\frac{14}{5} & -\frac{16}{5} & 1 \\
-\frac{16}{5} & \frac{29}{5} & -4 \\
1 & -4 & 5
\end{array}\right]\left[\begin{array}{l}
U_{2} \\
U_{3} \\
U_{4}
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

$$
\left[\begin{array}{rr}
\frac{15}{7} & -\frac{20}{7} \\
-\frac{20}{7} & \frac{65}{14}
\end{array}\right] \quad\left[\begin{array}{l}
U_{3} \\
U_{4}
\end{array}\right]=\left[\begin{array}{c}
\frac{8}{7} \\
-\frac{5}{14}
\end{array}\right]
$$

Fig. 8.1 Physical systems considered in the Gauss elimination solution of the simply supported beam.

SUBSTRUCTURING

- We use static condensation on the internal degrees of freedom of a substructure
- the result is a new stiffness matrix of the substructure involving boundary degrees of freedom only

50×50

32×32

Example

Fig. 8.3. Truss element with linearly varying area.

We have for the element,

$$
\frac{E A_{1}}{6 L}\left[\begin{array}{rrr}
17 & -20 & 3 \\
-20 & 48 & -28 \\
3 & -28 & 25
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{2} \\
U_{3}
\end{array}\right]=\left[\begin{array}{l}
R_{1} \\
R_{2} \\
R_{3}
\end{array}\right]
$$

First rearrange the equations

$$
\frac{E A_{1}}{6 L}\left[\begin{array}{rrr}
17 & 3 & -20 \\
3 & 25 & -28 \\
-20 & -28 & 48
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{3} \\
U_{2}
\end{array}\right]=\left[\begin{array}{l}
R_{1} \\
R_{3} \\
R_{2}
\end{array}\right]
$$

Static condensation of $U_{\mathbf{2}}$ gives

$$
\left.\begin{array}{c}
\frac{E A_{1}}{6 L}\left\{\left[\begin{array}{rr}
17 & 3 \\
3 & 25
\end{array}\right]-\left[\begin{array}{r}
-20 \\
-28
\end{array}\right]\left[\frac{1}{48}\right][-20\right. \\
-28]
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{3}
\end{array}\right]
$$

or

$$
\frac{13}{9} \frac{E A_{1}}{L}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{l}
U_{1} \\
U_{3}
\end{array}\right]=\left[\begin{array}{l}
R_{1}+\frac{5}{12} R_{2} \\
R_{3}+\frac{7}{12} R_{2}
\end{array}\right]
$$

and

$$
U_{2}=\frac{1}{24}\left(\frac{3 L}{E A_{1}} R_{2}+10 U_{1}+14 U_{3}\right)
$$

Bar with linearly varying area

(a) First-level substructure

(b) Second-level substructure

(c) Third-level substructure and actual structure.

Fig. 8.5. Analysis of bar using substructuring.

Frontal Solution

Fig. 8.6. Frontal solution of plane stress finite element idealization.

- The frontal solution consists of successive static condensation of nodal degrees of freedom.
- Solution is performed in the order of the element numbering.
- Same number of operations are performed in the frontal solution as in the skyline solution, if the element numbering in the wave front solution corresponds to the nodal point numbering in the skyline solution.

$\underline{L} \underline{D} \underline{L}^{\top}$ FACTORIZATION

- is the basis of the skyline solution (column reduction scheme)
- Basic Step

$$
\underline{L}_{1}^{-1} \underline{K}=\underline{K}
$$

Example:

$$
\left[\begin{array}{cccc}
1 & & & \\
\frac{4}{5} & 1 & \\
-\frac{1}{5} & 0 & 1 & \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
5 & -4 & 1 & 0 \\
-4 & 6 & -4 & 1 \\
1 & -4 & 6 & -4 \\
0 & 1 & -4 & 5
\end{array}\right]=\left[\begin{array}{cccc}
5 & -4 & 1 & 0 \\
0 & \frac{74}{5} & -\frac{16}{5} & 1 \\
0 & -\frac{16}{5} & \frac{29}{5} & -4 \\
0 & 1 & -4 & 5
\end{array}\right]
$$

We note

$$
\underline{L}^{-1}=\left[\begin{array}{cccc}
1 & & \\
\frac{4}{5} & 1 & \\
\frac{1}{5} & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right] ; \underline{L}_{1}=\left[\begin{array}{cccc}
1 & & \\
-\frac{4}{5} & 1 & \\
\frac{1}{5} & 0 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Proceeding in the same way

$$
\underline{L}_{n-1}^{-1} \underline{L}_{n-2}^{-1} \cdots \cdots \underline{L}_{2}^{-1} \underline{L}_{1}^{-1} \underline{K}=\underline{S}
$$

$$
\left.\underline{S}=\left[\begin{array}{cccccc}
x & x & x & x & \ldots & \ldots \\
& x & x & x & \ldots & x \\
& & x & \ldots & \ldots & x \\
& & & x & \ldots & x \\
& & & & x & x \\
& & & & & \ddots
\end{array}\right]\right\} \begin{aligned}
& \text { upper } \\
& \text { triangular } \\
& \text { matrix }
\end{aligned}
$$

Hence

$$
\underline{K}=\left(\underline{L}_{1} \underline{L}_{2} \cdots \underline{L}_{n-2} \underline{L}_{n-1}\right) \underline{S}
$$

or

$$
\underline{K}=\underline{L} \underline{S} ; \underline{L}=\underline{L}_{1} \underline{L}_{2} \cdots \underline{L}_{n-2} \underline{L}_{n-1}
$$

Also, because \underline{K} is symmetric

$$
\underline{K}=\underline{L} \underline{D} \underline{L}^{\top} ;
$$

where

$$
\underline{D}=\text { diagonal matrix } ; d_{i j}=s_{i j}
$$

In the Cholesky factorization, we use

$$
\underline{K}=\underline{\underline{L}} \underline{L}^{\top}
$$

where

$$
\underline{I}=\underline{L} \underline{D}^{\frac{1}{2}}
$$

SOLUTION OF EQUATIONS

Using

$$
\begin{equation*}
\underline{K}=\underline{L} \underline{D} \underline{L}^{\top} \tag{8.16}
\end{equation*}
$$

we have

$$
\begin{align*}
& \underline{L} \underline{V}=\underline{R} \tag{8.17}\\
& \underline{D} \underline{L}^{\top} \underline{U}=\underline{V} \tag{8.18}
\end{align*}
$$

where

$$
\begin{equation*}
\underline{v}=\underline{L}_{n-1}^{-1} \cdots \underline{L}_{2}^{-1} \underline{L}_{1}^{-1} \underline{R} \tag{8.19}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{L}^{\top} \underline{U}=\underline{D}^{-1} \underline{V} \tag{8.20}
\end{equation*}
$$

COLUMN REDUCTION SCHEME

$\left[\begin{array}{rrrr}5 & -4 & 1 & \\ & 6 & -4 & 1 \\ & & 6 & -4 \\ & & & 5\end{array}\right]$

$$
\left[\begin{array}{rr:rr}
5 & -\frac{4}{5} & 1 & \\
& \frac{14}{5} & -4 & 1 \\
& & 6 & -4 \\
& \frac{14}{5} & -4 & 1 \\
& & 6 & -4 \\
& & -\frac{4}{5} & 1 \\
& & & 5
\end{array}\right]
$$

$$
\left[\begin{array}{rrr:c}
5 & -\frac{4}{5} & \frac{1}{5} & \\
& \frac{14}{5} & -\frac{8}{7} & 1 \\
& & \frac{15}{7} & -4 \\
& & & 5
\end{array}\right]\left[\begin{array}{rrr:r}
5 & -\frac{4}{5} & \frac{1}{5} & \\
& \frac{14}{5} & -\frac{8}{7} & 1 \\
& & \frac{15}{7} & -4 \\
& & & 5
\end{array}\right]
$$


```
X = NONZERO ELEMENT
O= ZERO ELEMENT
```


ELEMENTS IN ORIGINAL STIFFNESS MATRIX
Typical element pattern in a stiffness matrix

ELEMENTS IN DECOMPOSED STIFFNESS MATRIX

Typical element pattern in a stiffness matrix

```
X = NONZERO ELEMENT
O= ZERO ELEMENT
```


ELEMENTS IN ORIGINAL STIFFNESS MATRIX
Typical element pattern in a stiffness matrix using block storage.

SOLUTION OF

FINITE ELEMENT EQUILIBRIUM EQUATIONS IN DYNAMIC ANALYSIS

LECTURE 10
56 MINUTES

LECTURE 10 Solution of dynamic response by direct integration

Basic concepts used
Explicit and implicit techniques
Implementation of methods
Detailed discussion of central difference and Newmark methods

Stability and accuracy considerations
Integration errors
Modeling of structural vibration and wave propagation problems

Selection of element and time step sizes
Recommendations on the use of the methods in practice

TEXTBOOK: Sections: 9.1, 9.2.1, 9.2.2, 9.2.3, 9.2.4, 9.2.5, 9.4.1, 9.4.2, 9.4.3, 9.4.4

Examples: 9.1, 9.2, 9.3, 9.4, 9.5, 9.12

DIRECT INTEGRATION SOLUTION OF EQUILIBRIUM EQUATIONS IN DYNAMIC ANALYSIS
$\underline{M} \underline{\ddot{U}}+\underline{\mathbf{C}} \underline{\mathbf{U}}+\underline{K} \underline{\mathbf{U}}=\underline{R}$

- explicit, implicit integration
- computational considerations
- selection of solution time step ($\Delta \mathrm{t}$)
- some modeling considerations

Equilibrium equations in dynamic analysis

$$
\begin{equation*}
\underline{M} \underline{\ddot{U}}+\underline{C} \underline{\dot{U}}+\underline{K} \underline{U}=\underline{R} \tag{9.1}
\end{equation*}
$$

or

$$
\begin{equation*}
\underline{F}_{I}(t)+\underline{F}_{D}(t)+\underline{F}_{E}(t)=\underline{R}(t) \tag{9.2}
\end{equation*}
$$

Load description

Fig. 1. Evaluation of externally applied nodal point load vector t_{R} at time t.

THE CENTRAL DIFFERENCE METHOD (CDM)

$$
\begin{align*}
& \left.t_{\underline{\tilde{U}}}=\frac{1}{\Delta t^{2}}{ }^{t-\Delta t} \underline{\underline{U}}-2^{t} \underline{U}+{ }^{t+\Delta t} \underline{U}\right\} \tag{9.3}\\
& t_{\underline{U}}=\frac{1}{2 \Delta t}\left(-^{t-\Delta t} \underline{U}+{ }^{t+\Delta t} \underline{U}\right) \tag{9.4}\\
& \underline{M}^{\mathrm{t}} \underline{\underline{\tilde{U}}}+\underline{\mathrm{C}}{ }^{\mathrm{t}} \underline{\underline{U}}+\underline{\mathrm{K}}{ }^{\mathrm{t}} \underline{\underline{U}}=\underline{t}_{\underline{R}} \tag{9.5}
\end{align*}
$$

an explicit integration scheme

Combining (9.3) to (9.5) we obtain

$$
\begin{aligned}
&\left(\frac{1}{\Delta t^{2}} \underline{M}+\frac{1}{2 \Delta t} \underline{C}\right)^{t+\Delta t} \underline{U}=t^{t} \underline{R}-\left(\underline{K}-\frac{2}{\Delta t^{2}} \underline{M}\right)^{t} \underline{U} \\
&-\left(\frac{1}{\Delta t^{2}} \underline{M}-\frac{1}{2 \Delta t} \underline{c}\right)^{t-\Delta t} \underline{U}
\end{aligned}
$$

where we note

$$
\begin{aligned}
\underline{K}^{t} \underline{U} & =\left(\sum_{m} \underline{K}^{(m)}\right)^{t^{U}} \underline{U} \\
& =\sum_{m}\left(\underline{K}^{(m)} \underline{t}_{\underline{U}}\right)=\sum_{m}{ }^{t_{F}}(m)
\end{aligned}
$$

Computational considerations

- to start the solution, use

$$
\begin{equation*}
-\Delta t_{U}(i)=0_{U}(i)-\Delta t 0_{\dot{U}}(i)+\frac{\Delta t^{2}}{2} 0_{U}(i) \tag{9.7}
\end{equation*}
$$

- in practice, mostly used with lumped mass matrix and low-order elements.

Stability and Accuracy of CDM

- $\Delta \mathrm{t}$ must be smaller than $\Delta \mathrm{t}_{\mathrm{cr}}$

$$
\Delta t_{c r}=\frac{T_{n}}{\pi} ; T_{n}=\begin{gathered}
\text { smallest natural } \\
\text { period in the system }
\end{gathered}
$$

hence method is conditionally stable

- in practice, use for continuum elements,

$$
\Delta t \leq \frac{\Delta L}{c} \quad ; \quad c=\sqrt{\frac{E}{\rho}}
$$

for lower-order elements
$\Delta \mathrm{L}=$ smallest distance between
nodes
for high-order elements

$$
\begin{aligned}
\Delta L= & (\text { smallest distance between } \\
& \text { nodes }) / \text { (rel. stiffness factor) }
\end{aligned}
$$

- method used mainly for wave propagation analysis
- number of operations
\propto no. of elements and no. of time steps

THE NEWMARK METHOD

$$
\begin{align*}
& t+\Delta t_{\underline{\dot{U}}}={ }^{t_{\dot{U}}}+\left[(1-\delta)^{t} \underline{\ddot{U}}+\delta^{\left.t+\Delta t_{\underline{\ddot{U}}}\right] \Delta t}\right. \tag{9.27}\\
& t+\Delta t_{\underline{U}}={ }^{t} \underline{U}+{ }^{t_{\underline{U}}} \Delta t \tag{9.28}\\
& +\left[\left(\frac{1}{2}-\alpha\right)^{t} \underline{\ddot{u}}+\alpha^{t+\Delta t} \underline{\ddot{j}}\right] \Delta t^{2} \\
& \underline{M}^{t+\Delta t} \underline{\underline{U}}+\underline{c}^{t+\Delta t} \underline{\dot{U}}+\underline{K}^{t+\Delta t} \underline{U}={ }^{t+\Delta t} \underline{R} \tag{9.29}
\end{align*}
$$

an implicit integration scheme solution is obtained using

$$
\underline{\hat{R}}^{\mathrm{t}+\Delta \mathrm{t}_{\underline{U}}={ }^{\mathrm{t}+\Delta \mathrm{t}} \underline{\hat{R}}, ~}
$$

- In practice, we use mostly

$$
\alpha=\frac{1}{4}, \delta=\frac{1}{2}
$$

which is the constant-average-acceleration method (Newmark's method)

- method is unconditionally stable
- method is used primarily for analysis of structural dynamics problems
- number of operations

$$
\doteq \frac{1}{2} n m^{2}+2 n m t
$$

Accuracy considerations

- time step Δt is chosen based on accuracy considerations only
- Consider the equations

$$
\underline{M} \underline{\ddot{U}}+\underline{K} \underline{U}=\underline{R}
$$

and

$$
\underline{U}=\sum_{i=1}^{n} \Phi_{i} x_{i}(t)
$$

where

$$
\underline{K} \underline{\phi}_{i}=\omega_{i}^{2} \underline{M} \underline{\Phi}_{i}
$$

Using

$$
\underline{\Phi}^{\top} \underline{K} \underline{\Phi}=\underline{\Omega}^{2} ; \quad \underline{\Phi}^{\top} \underline{M} \underline{\Phi}=\underline{I}
$$

$$
\begin{aligned}
& \text { where } \\
& \underline{\Phi}=\left[\underline{\phi}_{1}, \ldots, \underline{\phi}_{n}\right] \quad ; \quad \underline{\Omega}^{2}=\left[\begin{array}{llll}
\omega_{1}^{2} & & \\
& \cdot & & \\
& & \omega_{n}^{2}
\end{array}\right]
\end{aligned}
$$

we obtain n equations from which to solve for $\mathbf{x}_{\mathbf{i}}(\mathbf{t}) \quad$ (see Lecture 11)

$$
\ddot{x}_{i}+\omega_{i}^{2} x_{i}=\Phi_{i}^{\top} \underline{R} \quad i=1, \ldots, n
$$

Hence, the direct step-by-step solution of

$$
\underline{M} \underline{\ddot{U}}+\underline{K} \underline{U}=\underline{R}
$$

corresponds to the direct step-bystep solution of

$$
\ddot{x}_{i}+\omega_{i}^{2} x_{i}=\phi_{i}^{\top} \underline{R} \quad i=1, \ldots, n
$$

with

$$
\underline{U}=\sum_{i=1}^{n} \Phi_{i} x_{i}
$$

Therefore, to study the accuracy of the Newmark method, we can study the solution of the single degree of freedom equation

$$
\ddot{x}+\omega^{2} x=r
$$

Consider the case

$$
\begin{aligned}
& \ddot{x}+\omega^{2} x=0 \\
& o^{o}=1.0 \quad ; \quad{ }^{o} \dot{x}=0 \quad ; \quad o^{0} \ddot{x}=-\omega^{2}
\end{aligned}
$$

Solution of finite element equilibrium equations in dynamic analysis

Fig. 9.8 (a) Percentage period elongations and amplitude decays.

Fig. 9.8 (b) Percentage period elongations and amplitude decays.

Fig. 9.4. The dynamic load factor

Response of a single degree of freedom system.

Response of a single degree of freedom system.

Modeling of a structural vibration problem

1) Identify the frequencies contained in the loading, using a Fourier analysis if necessary.
2) Choose a finite element mesh that accurately represents all frequencies up to about four times the highest frequency ω_{u} contained in the loading.
3) Perform the direct integration analysis. The time step Δt for this solution should equal about $\frac{1}{20} T_{u}$, where $T_{u}=2 \pi / \omega_{u}$, or be smaller for stability reasons.

Modeling of a wave propagation

 problemIf we assume that the wave length
is L_{W}, the total time for the wave to travel past a point is

$$
\begin{equation*}
t_{w}=\frac{L_{w}}{c} \tag{9.100}
\end{equation*}
$$

where c is the wave speed. Assuming that n time steps are necessary to represent the wave, we use
$\Delta t=\frac{{ }^{t}{ }_{w}}{n}$
and the "effective length" of a finite element should be

$$
\begin{equation*}
\mathrm{L}_{\mathrm{e}}=\mathrm{c} \Delta \mathrm{t} \tag{9.102}
\end{equation*}
$$

SUMMARY OF STEP-BY-STEP INTEGRATIONS

-- INITIAL CALCULATIONS .--

1. Form linear stiffness matrix K, mass matrix \mathbf{M} and damping matrix $\underline{\mathbf{C}}$, whichever applicable;

Calculate the following constants:

Newmark method: $\delta \geq 0.50, \alpha \geq 0.25(0.5+\delta)^{2}$
$a_{0}=1 /\left(\alpha \Delta t^{2}\right) \quad a_{1}=\delta /(\alpha \Delta t) \quad a_{2}=1 /(\alpha \Delta t) \quad a_{3}=1 /(2 \alpha)-1$
$a_{4}=\delta / a-1 \quad a_{5}=\Delta t(\delta / \alpha-2) / 2 \quad a_{6}=a_{0} \quad a_{7}=-a_{2}$
$a_{8}=-a_{3} \quad a_{9}=\Delta t(1-\delta) \quad a_{10}=\delta \Delta t$
Central difference method:
$a_{0}=1 / \Delta t^{2}$
$a_{1}=1 / 2 \Delta t$
$a_{2}=2 a_{0}$
$a_{3}=1 / a_{2}$
2. Initialize ${ }^{0} \underline{U},{ }^{0} \underline{\underline{U}},{ }^{0_{\ddot{U}}}$;

For central difference method only, calculate Δt_{U} from initial conditions:

$$
\Delta t_{\underline{U}}={ }^{0} \underline{U}+\Delta t{ }^{0} \underline{\underline{U}}+a_{3} \underline{0} \underline{\ddot{U}}
$$

3. Form effective linear coefficient matrix;
in implicit time integration:

$$
\underline{\hat{k}}=\underline{K}+a_{0} \underline{M}+a_{1} \underline{C}
$$

in explicit time integration:

$$
\hat{M}=a_{0} \underline{M}+a_{1} \underline{C}
$$

4. In dynamic analysis using implicit time integration triangularize \widehat{K}.
--- FOR EACH STEP .--
(i) Form effective load vector; in implicit time integration:

$$
\begin{aligned}
t+\Delta t_{\underline{\hat{R}}}= & { }^{t+\Delta t_{\underline{R}}}+\underline{M}\left(a_{0}{ }^{t_{\underline{U}}}+a_{2}{ }^{t_{\dot{U}}}+a_{3}{ }^{t_{\ddot{U}}}\right) \\
& +\underline{C}\left(a_{1}{ }^{t_{\underline{U}}}+a_{4}{ }^{t_{\dot{U}}}+a_{5}{ }^{t_{\ddot{U}}}\right)
\end{aligned}
$$

in explicit time integration:

$$
{ }^{t_{\underline{R}}}=t_{\underline{R}}+a_{2} \underline{M}\left({ }^{t} \underline{U}-{ }^{t-\Delta t} \underline{U}\right)+\hat{M}^{t-\Delta t} \underline{U}-t^{t} \underline{F}
$$

(ii) Solve for displacement increments;
in implicit time integration:
in explicit time integration:
$\hat{\hat{M}}^{\mathrm{t}+\Delta \mathrm{t}_{\underline{U}}={ }^{\mathrm{t}} \underline{\hat{R}}, ~}$

Newmark Method:

$$
\begin{aligned}
& t+\Delta t_{\underline{u}}=a_{6} \underline{u}+a_{7} t_{\underline{\dot{u}}}+a_{8} t_{\underline{u}} \\
& t+\Delta t_{\underline{\dot{U}}}=t_{\underline{\dot{U}}}+a_{9}{ }^{t} \underline{\ddot{u}}+a_{10}{ }^{t+\Delta t_{\underline{\ddot{u}}}} \\
& t+\Delta t_{\underline{U}}=t_{\underline{U}}+\underline{U}
\end{aligned}
$$

Central Difference Method:

$$
\begin{aligned}
& t_{\underline{\tilde{U}}}=a_{1}\left({ }^{\left.t+\Delta t_{\underline{U}}-{ }^{t-\Delta t} \underline{U}\right)}\right. \\
& t_{\underline{U}}=a_{0}\left({ }^{t+\Delta t_{\underline{U}}}-2^{t^{U}}+{ }^{t-\Delta t_{U}}\right)
\end{aligned}
$$

MODE SUPERPOSITION ANALYSIS; TIME HISTORY

LECTURE 11 Solution of dynamic response by mode super position

The basic idea of mode superposition
Derivation of decoupled equations
Solution with and without damping
Caughey and Rayleigh damping
Calculation of damping matrix for given damping ratios

Selection of number of modal coordinates
Errors and use of static correction
Practical considerations

TEXTBOOK: Sections: 9.3.1, 9.3.2, 9.3.3
Examples: 9.6, 9.7, 9.8, 9.9, 9.10, 9.11

Mode Superposition Analysis

Basic idea is:

$$
\begin{aligned}
& \text { transform dynamic equilibrium } \\
& \text { equations into a more effective } \\
& \text { form for solution, } \\
& \text { using } \\
& \qquad \frac{U}{n \times 1}=\frac{p}{n \times n} \frac{x}{n \times 1}(t) \\
& \underline{p}=\text { transformation matrix } \\
& \underline{x}(t)=\text { generalized displacements }
\end{aligned}
$$

Using

$$
\begin{equation*}
\underline{U}(t)=\underline{P} \underline{X}(t) \tag{9.30}
\end{equation*}
$$

on

$$
\begin{equation*}
\underline{M} \underline{U} \underline{C}+\underline{C} \underline{U}+\underline{K} \underline{U}=\underline{R} \tag{9.1}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\underline{\tilde{M}} \ddot{X}(t)+\underline{\tilde{C}} \underline{\dot{X}}(t)+\underline{\tilde{K}} \underline{X}(t)=\underline{\tilde{R}}(t) \tag{9.31}
\end{equation*}
$$

where

$$
\begin{align*}
& \underline{\tilde{M}}=\underline{p}^{\top} \underline{M} \underline{P} ; \quad \underline{\tilde{C}}=\underline{p}^{\top} \underline{C} \underline{P} ; \\
& \underline{\tilde{K}}=\underline{P}^{\top} \underline{K} \underline{P} ; \quad \underline{\tilde{R}}=\underline{p}^{\top} \underline{R} \tag{9.32}
\end{align*}
$$

An effective transformation matrix \mathbf{P} is established using the displacement solutions of the free vibration equilibrium equations with damping neglected,

$$
\begin{equation*}
\underline{M} \underline{\ddot{U}}+\underline{K} \underline{U}=\underline{0} \tag{9.34}
\end{equation*}
$$

Using

$$
\begin{equation*}
\underline{U}=\phi \sin \omega\left(t-t_{0}\right) \tag{9.35}
\end{equation*}
$$

we obtain the generalized eigenproblem,

$$
\begin{equation*}
\underline{K} \Phi=\omega^{2} \underline{M} \underline{\Phi} \tag{9.36}
\end{equation*}
$$

with the n eigensolutions $\left(\omega_{1}^{2}, \Phi_{1}\right)$,

$$
\left(\omega_{2}^{2}, \phi_{2}\right), \ldots,\left(\omega_{n}^{2}, \Phi_{n}\right), \text { and }
$$

$$
\Phi_{\mathrm{i}}^{\top} \underline{M}_{\mathrm{j}}\left\{\begin{array}{lll}
=1 & ; & \mathbf{i}=\mathbf{j} \tag{9.37}\\
=0 & ; & \mathbf{i} \neq \mathbf{j}
\end{array}\right.
$$

$$
\begin{equation*}
0 \leq \omega_{1}^{2} \leq \omega_{2}^{2} \leq \omega_{3}^{2} \cdots \leq \omega_{n}^{2} \tag{9.38}
\end{equation*}
$$

Defining

$$
\underline{\Phi}=\left[\underline{\phi}_{1}, \Phi_{2}, \ldots, \underline{\Phi}_{n}\right] ; \underline{\Omega}^{2}=\left[\begin{array}{llll}
\omega_{1}^{2} & & \tag{9.39}\\
& & \\
& \omega_{2}^{2} & \\
& & \\
& & \omega_{n}^{2}
\end{array}\right]
$$

we can write

$$
\begin{equation*}
\underline{K} \Phi=\underline{M} \Phi \underline{\Omega}^{2} \tag{9.40}
\end{equation*}
$$

and have

$$
\begin{equation*}
\underline{\Phi}^{\top} \underline{K} \underline{\Phi}=\underline{\Omega}^{2} \quad ; \quad \underline{\Phi}^{\top} \underline{M} \underline{\Phi}=\underline{I} \tag{9.41}
\end{equation*}
$$

Now using

$$
\begin{equation*}
\underline{U}(\mathrm{t})=\underline{\Phi} \underline{X}(\mathrm{t}) \tag{9.42}
\end{equation*}
$$

we obtain equilibrium equations that correspond to the modal generalized displacements

$$
\begin{equation*}
\ddot{\ddot{X}}(\mathrm{t})+\underline{\Phi}^{\top} \underline{C} \underline{\Phi} \underline{\dot{X}}(\mathrm{t})+\underline{\Omega}^{2} \underline{X}(\mathrm{t})=\underline{\Phi}^{\top} \underline{R}(\mathrm{t}) \tag{9.43}
\end{equation*}
$$

The initial conditions on $\underline{X}(t)$ are obtained using (9.42) and the \underline{M} - orthonormality of Φ; i.e., at time 0 we have

$$
\begin{equation*}
{ }^{0} \underline{X}=\Phi^{\top} \underline{M}{ }^{0} \underline{U} ; \quad{ }^{0} \underline{\dot{x}}=\Phi^{\top} \underline{M}^{0} \underline{\underline{U}} \tag{9.44}
\end{equation*}
$$

Analysis with Damping Neglected

$$
\begin{equation*}
\underline{\ddot{x}}(t)+\underline{\Omega}^{2} \underline{x}(t)=\underline{\Phi}^{\top} \underline{R}(t) \tag{9.45}
\end{equation*}
$$

i.e., \mathbf{n} individual equations of the form

$$
\begin{align*}
& \left.\left.\begin{array}{l}
\ddot{x}_{i}(t)+\omega_{i}^{2} x_{i}(t) \\
\text { where } \\
\\
\quad r_{i}(t) \\
\\
\end{array}\right\} \begin{array}{l}
\phi_{i}^{\top} \underline{R}(t)
\end{array}\right\}=1,2, \ldots, n \tag{9.46}
\end{align*}
$$

with

$$
\begin{align*}
& \left.x_{i}\right|_{t=0}=\underline{\Phi}_{i}^{\top} \underline{M}^{0} \underline{U} \tag{9.47}\\
& \left.\dot{x}_{i}\right|_{t=0}=\Phi_{i}^{\top} \underline{M}^{0_{\dot{U}}}
\end{align*}
$$

Using the Duhamel integral we have

$$
\begin{aligned}
x_{i}(t) & =\frac{1}{\omega_{i}} \int_{0}^{t} r_{i}(\tau) \sin \omega_{i}(t-\tau) d \tau \\
& +\alpha_{i} \sin \omega_{i} t+\beta_{i} \cos \omega_{i} t
\end{aligned}
$$

where α_{i} and β_{i} are determined from the initial conditions in (9.47). And then

$$
\begin{equation*}
\underline{u}(t)=\sum_{i=1}^{n} \underline{\Phi}_{i} x_{i}(t) \tag{9.49}
\end{equation*}
$$

Fig. 9.4. The dynamic load factor

Hence we use
$\underline{u}^{p}=\sum_{i=1}^{p} \underline{\Phi}_{i} x_{i}(t)$
where
$\underline{U}^{\mathrm{p}} \doteq \underline{\mathrm{U}}$

The error can be measured using
$\epsilon^{p}(t)=\frac{\left\|\underline{R}(t)-\left(\underline{M}_{\underline{U}}{ }^{p}(t)+\underline{K}_{\underline{U}} \underline{U}^{p}(t)\right)\right\|_{2}}{\|\underline{R}(t)\|_{2}}$

Static correction

Assume that we used p
modes to obtain $\underline{U}^{\mathbf{P}}$, then let

$$
\underline{R}=\sum_{i=1}^{n} r_{i}\left(M \Phi_{i}\right)
$$

Hence

$$
r_{i}=\underline{\Phi}_{i}^{\top} \underline{R}
$$

Then

$$
\Delta \underline{R}=\underline{R}-\sum_{i=1}^{p} r_{i}\left(\underline{M} \underline{\phi}_{i}\right)
$$

and

$$
\underline{K} \Delta \underline{U}=\Delta \underline{R}
$$

Analysis with Damping Included

Recall, we have

$$
\begin{equation*}
\underline{\ddot{X}}(t)+\underline{\Phi}^{\top} \underline{C} \underline{\Phi} \underline{\dot{X}}(t)+\underline{\Omega}^{2} \underline{X}(t)=\underline{\Phi}^{\top} \underline{R}(t) \tag{9.43}
\end{equation*}
$$

If the damping is proportional

$$
\begin{equation*}
\Phi_{i}^{\top} \underline{C}_{\underline{j}}=2 \omega_{i} \xi_{i} \delta_{i j} \tag{9.51}
\end{equation*}
$$

and we have

$$
\begin{gather*}
\ddot{x}_{i}(t)+2 \omega_{i} \xi_{i} \dot{x}_{i}(t)+\omega_{i}^{2} x_{i}(t)=r_{i}(t) \\
i=1, \ldots, n \tag{9.52}
\end{gather*}
$$

A damping matrix that satisfies the relation in (9.51) is obtained using the Caughey series,

$$
\begin{equation*}
\underline{C}=\underline{M} \sum_{k=0}^{p-1} a_{k}\left[\underline{M}^{-1} \underline{K}\right]^{k} \tag{9.56}
\end{equation*}
$$

where the coefficients $a_{k}, k=1, \ldots, p$, are calculated from the p simultaneous equations

$$
\begin{align*}
\xi_{i}=\frac{1}{2}\left(\frac{a_{0}}{\omega_{i}}+a_{1} \omega_{i}\right. & +a_{2} \omega_{i}^{3}+\ldots \\
& \left.+a_{p-1} \omega_{i}^{2 p-3}\right) \tag{9.57}
\end{align*}
$$

A special case is Rayleigh damping,

$$
\begin{equation*}
\underline{C}=\underline{\alpha} \underline{M}+\underline{\beta} \underline{K} \tag{9.55}
\end{equation*}
$$

example:

$$
\begin{array}{lll}
\text { Assume } & \xi_{1}=0.02 ; & \xi_{2}=0.10 \\
& \omega_{1}=2 & \omega_{2}=3 \\
\text { calculate } & \alpha \text { and } \beta &
\end{array}
$$

We use

$$
\underline{\phi}_{i}^{\top}(\underline{\alpha} \underline{M}+\underline{\beta} \underline{K}) \Phi_{i}=2 \omega_{i} \xi_{i}
$$

or

$$
\underline{\alpha}+\underline{\beta} \omega_{i}^{2}=2 \omega_{i} \xi_{i}
$$

Using this relation for ω_{1}, ξ_{1} and ω_{2}, ξ_{2}, we obtain two equations for α and β :
$\underline{\alpha}+4 \underline{\beta}=0.08$
$\underline{\alpha}+9 \underline{\beta}=0.60$

The solution is $\alpha=-0.336$ and $\beta=0.104$. Thus the damping matrix to be used is

$$
\underline{C}=-0.336 \underline{M}+0.104 \underline{K}
$$

Note that since

$\alpha+\beta \omega_{i}^{2}=2 \omega_{i} \xi_{i}$
for any \mathbf{i}, we have, once α and β have been established,

$$
\begin{aligned}
\xi_{i} & =\frac{\alpha+\beta \omega_{i}^{2}}{2 \omega_{i}} \\
& =\frac{\alpha}{2 \omega_{i}}+\frac{\beta}{2} \omega_{\boldsymbol{i}}
\end{aligned}
$$

Response solution

As in the case of no damping we solve p equations

$$
\ddot{x}_{i}+2 \omega_{i} \xi_{i} x_{i}+\omega_{i}^{2} x_{i}=r_{i}
$$

with

$$
\begin{aligned}
& r_{i}=\underline{\Phi}_{i}^{\top} \underline{R} \\
& x_{i} \mid t=0=\Phi_{i}^{\top} \underline{M}^{0} \underline{U} \\
& \dot{x}_{i} \mid t=0=\Phi_{i}^{\top} \underline{M} \underline{0}_{\dot{U}}
\end{aligned}
$$

and then

$$
\underline{U}^{p}=\sum_{i=1}^{p} \underline{\phi}_{i} x_{i}(t)
$$

Practical considerations

mode superposition analysis is effective

- when the response lies in a few modes only, $p \ll n$
- when the response is to be obtained over many time intervals (or the modal response can be obtained in closed form).
e.g. earthquake engineering vibration excitation
- it may be important to calculate $\varepsilon_{p}(t)$ or the static correction.

SOLUTION METHODS FOR CALCULATIONS OF FREQUENCIES AND MODE SHAPES

LECTURE 12
58 MINUTES

LECTURE 12 Solution methods for finite element eigenproblems

Standard and generalized eigenproblems
Basic concepts of vector iteration methods, polynomial iteration techniques, Sturm sequence methods, transformation methods

Large eigenproblems
Details of the determinant search and subspace iteration methods

Selection of appropriate technique, practical considerations

TEXTBOOK: Sections: 12.1, 12.2.1, 12.2.2, 12.2.3, 12.3.1, 12.3.2, 12.3.3, 12.3.4, 12.3.6 (the material in Chapter 11 is also referred to)

Examples: 12.1, 12.2, 12.3, 12.4

SOLUTION METHODS FOR

EIGENPROBLEMS

Standard EVP:
$\underset{n \times n}{ } \underset{\sim}{x}=\lambda \underline{L}$
Generalized EVP:
$\underline{K} \Phi=\lambda \underline{M} \nleftarrow \quad\left(\lambda=\omega^{2}\right)$
Quadratic EVP:
$\left(\underline{K}+\lambda \underline{C}+\lambda^{2} \underline{M}\right) \underline{\phi}=\underline{0}$
Most emphasis on the generalized
EVP e.g. earthquake engineering
"Large EVP" $n>500 \quad p=1, \ldots, \frac{1}{3} n$

$$
m>60
$$

In dynamic analysis, proportional damping
$\underline{K} \underline{\phi}=\omega^{2} \underline{M} \underline{\Phi}$
If zero freq. are present we can use the following procedure

$$
\underline{K} \Phi+\mu \underline{M} \Phi=\left(\omega^{2}+\mu\right) \underline{M} \Phi
$$

or

$$
(\underline{K}+\mu \underline{M}) \underline{\phi}=\lambda \underline{M} \underline{\phi}
$$

$$
\text { or } \begin{aligned}
\lambda & =\omega^{2}+\mu \\
\omega^{2} & =\lambda-\mu
\end{aligned}
$$

In buckling analysis

$$
\underline{K} \underline{\phi}=\lambda \underline{K}_{G} \underline{\phi}
$$

where

$$
p(\lambda)=\operatorname{det}\left(\underline{K}-\lambda \underline{K}_{G}\right)
$$

Rewrite problem as:

$$
\underline{K}_{G} \Phi=\kappa \underline{K} \Phi \quad \kappa=\frac{1}{\lambda}
$$

and solve for largest κ :

Traditional Approach: Transform the generalized EVP or quadratic EVP into a standard form, then solve using one of the many techniques available
e.g.

$$
\begin{aligned}
& \underline{K} \Phi=\lambda \underline{M} \Phi \\
& \underline{M}=\tilde{L}_{\underline{L}} \underline{\underline{T}}^{\top} ; \underline{\tilde{\phi}}=\tilde{\tilde{L}}^{\top} \Phi
\end{aligned}
$$

hence

$$
\underline{\underline{K}} \tilde{\Phi}=\lambda \tilde{\Phi} ; \quad \tilde{\tilde{K}}=\tilde{\tilde{L}}^{-1} \underline{K} \tilde{\underline{L}}^{-T}
$$

or
$\underline{M}=\underline{W} \underline{D}^{2} \underline{W}^{\top} \quad$ etc...

Direct solution is more effective.
Consider the Gen. EVP $\underline{\mathrm{K}} \underline{\phi}=\lambda \underline{\mathrm{M}} \underline{\phi}$ with

$$
\begin{aligned}
& 0<\lambda_{1} \leq \lambda_{2} \leq \lambda_{3} \cdots \leq \lambda_{n} \\
& \qquad \Phi_{1} \Phi_{2} \quad \Phi_{3} \cdots \Phi_{n} \\
& \left.\begin{array}{l}
\text { eigenpairs } \\
\text { are required }
\end{array} \lambda_{i}, \Phi_{i}\right) \quad i=1, \ldots, p \\
& \text { or } i=r, \ldots, s
\end{aligned}
$$

The solution procedures in use operate on the basic equations that have to be satisfied.

1) VECTOR ITERATION TECHNIQUES

Equation: $\quad \underline{K} \Phi=\lambda \underline{M} \Phi$
e.g. Inverse It.

$$
\underline{K} \underline{x}_{k+1}=M \underline{x}_{k}
$$

$$
\underline{x}_{k+1}=\frac{\bar{x}_{k+1}}{\left(\bar{x}_{k+1}{ }^{\top} \underline{M} \underline{\bar{x}}_{k+1}\right)^{\frac{3}{2}}} \longrightarrow \Phi_{1}
$$

- Forward Iteration
- Rayleigh Quotient Iteration
can be employed to cal-
culate one eigenvalue and vector, deflate then to calculate additional eigenpair

Convergence to "an eigenpair", which one is not guaranteed (convergence may also be slow)

2) POLYNOMIAL ITERATION METHODS

$$
\underline{K} \underline{\underline{K}}=\lambda \underline{M} \Phi \rightarrow(\underline{K}-\lambda \underline{M}) \underline{\underline{0}}
$$

Hence

$$
p(\lambda)=\operatorname{det}(\underline{K}-\lambda \underline{M})=0
$$

Newton Iteration

$$
\begin{aligned}
& \mu_{i+1}=\mu_{i}-\frac{p\left(\mu_{i}\right)}{p^{\prime}\left(\mu_{i}\right)} \\
& p(\lambda)=a_{0}+a_{1} \lambda+a_{2} \lambda^{2}+\ldots+a_{n} \lambda^{n} \\
& =b_{0}\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right) \ldots\left(\lambda-\lambda_{n}\right)
\end{aligned}
$$

Explicit polynomial iteration:

- Expand the polynomial and iterate for zeros.
- Technique not suitable for larger problems
- much work to obtain a_{i} 's - unstable process

Implicit polynomial iteration:

$$
\begin{aligned}
p\left(\mu_{i}\right) & =\operatorname{det}\left(\underline{K}-\mu_{i} \underline{M}\right) \\
& =\operatorname{det} \underline{\underline{D} \underline{L^{\top}}}=\prod_{\mathbf{i}} \mathbf{d}_{\mathbf{i i}}
\end{aligned}
$$

- accurate, provided we do not encounter large multipliers
- we directly solve for λ_{1}, \ldots
- use SECANT ITERATION:

$$
\mu_{i+1}=\mu_{\mathbf{i}}-\frac{\mathbf{p}\left(\mu_{\mathrm{i}}\right)}{\left(\frac{\mathbf{p}\left(\mu_{\mathbf{i}}\right)-\mathbf{p}\left(\mu_{\mathrm{i}-1}\right)}{\mu_{\mathbf{i}}-\mu_{\mathbf{i}-1}}\right)}
$$

- deflate polynomial after convergence to λ_{1}

Convergence guaranteed to λ_{1}, then
λ_{2}, etc. but can be slow when we calculate multiple roots.

Care need be taken in $\underline{L} \underline{D} \underline{L}^{\top}$ factorization.
3) STURM SEQUENCE METHODS

Number of negative elements in D is equal to the number of eigenvalues smaller than μ_{S}.

3) STURM SEQUENCE METHODS

Calculate $\underline{K}-\mu_{S_{i}} \underline{M}=\underline{L} \underline{D} \underline{L}^{\top}$
Count number of negative elements in \underline{D} and use a strategy to isolate eigenvalue(s).

- Convergence can be very slow

4) TRANSFORMATION METHODS

$$
\underline{K} \phi=\lambda \underline{M} \phi \rightarrow\left\{\begin{array}{l}
\underline{\Phi}{ }^{T} \underline{K} \underline{\Phi}=\underline{\Lambda} \\
\underline{\Phi} \underline{M}_{\underline{M}} \underline{\underline{I}}=\underline{\underline{I}}
\end{array}\right.
$$

Construct Φ iteratively:
$\Phi=\left[\Phi, \ldots \phi_{n}\right] ; \quad \Lambda=\left[\begin{array}{lll}\lambda_{1} & & \\ & \ddots \\ & & \lambda_{n}\end{array}\right]$

$$
\begin{aligned}
& \underline{P}_{k}^{\top} \cdots \underline{P}_{2}^{\top} \underline{P}_{1}^{\top} \underline{K} \underline{P}_{1} \underline{P}_{2} \cdots \underline{P}_{k} \rightarrow \underline{\Lambda} \\
& \underline{P}_{k}^{\top} \cdots \underline{P}_{2}^{\top} \underline{P}_{1}^{\top} \stackrel{M}{M} \underline{P}_{1} \underline{P}_{2} \cdots \underline{P}_{k} \rightarrow \underline{I}
\end{aligned}
$$

e.g. generalized Jacobi method

- Here we calculate all eigenpairs simultaneously
- Expensive and ineffective
(impossible) or large problems.

For large eigenproblems it is best to use combinations of the above basic techniques:

- Determinant search to get near a root
- Vector iteration to obtain eigenvector and eigenvalue
- Transformation method for orthogonalization of iteration vectors.
- Sturm sequence method to ensure that required eigenvalue(s) has (or have) been calculated

THE DETERMINANT SEARCH METHOD

1) Iterate on polynomial to obtain shifts close to λ_{1}

$$
\begin{aligned}
p\left(\mu_{\mathbf{i}}\right) & =\operatorname{det}\left(\underline{K}-\mu_{\mathbf{i}} \underline{M}\right) \\
& =\operatorname{det} \underline{L} \underline{D} \underline{L}^{\top}={\underset{\mathbf{i}}{\mathbf{i}}} \mathbf{d}_{\mathbf{i} \mathbf{i}} \\
\mu_{\mathbf{i}+1} & =\mu_{\mathbf{i}}-\eta \frac{p\left(\mu_{\mathbf{i}}\right)}{\frac{p\left(\mu_{\mathbf{i}}\right)-p\left(\mu_{\mathbf{i}-1}\right)}{\mu_{\mathbf{i}}-\mu_{\mathbf{i}-1}}}
\end{aligned}
$$

η is normally $=\mathbf{1 . 0}$
$\eta=2$, 4. , 8. ,... when convergence is slow

Same procedure can be employed to obtain shift near λ_{i}, provided $p(\lambda) \quad$ is deflated of $\lambda_{1}, \ldots, \lambda_{i-1}$

2) Use Sturm sequence property to

 check whether μ_{i+1} is larger than an unknown eigenvalue.3) Once $\quad \mu_{i+1}$ is larger than an unknown eigenvalue, use inverse iteration to calculate the eigenvector and eigenvalue

$$
\begin{aligned}
\left(\underline{K}-\mu_{i+1} \underline{M}\right) \underline{\bar{x}}_{k+1} & =\underline{M} \underline{x}_{k} \quad k=1,2, \ldots \\
\underline{x}_{k+1} & =\frac{\bar{x}_{k+1}}{\left(\bar{x}_{k+1}^{\top} M \bar{x}_{k+1}\right)^{\frac{1}{2}}} \\
\rho\left(\underline{\bar{x}}_{k+1}\right) & =\frac{\bar{x}_{k+1}^{\top}-\frac{M}{x}}{\bar{x}_{k+1}-M} \underline{\bar{x}}_{k+1}
\end{aligned}
$$

4) Iteration vector must be deflated of the previously calculated eigenvectors using, e.g. GramSchmidt orthogonalization.

If convergence is slow use Rayleigh quotient iteration

Advantage:
Calculates only eigenpairs actually required; no prior transformation of eigenproblem

Disadvantage:
Many triangular factorizations

- Effective only for small banded systems

We need an algorithm with less factorizations and more vector iterations when the bandwidth of the system is large.

SUBSPACE ITERATION METHOD

Iterate with q vectors when the lowest p eigenvalues and eigenvectors are required.

$$
\begin{aligned}
& \underset{\text { iteration }}{\text { inverse }}\left\{\underline{K} \quad \bar{X}_{k+1}=M \quad X_{k} \quad k=1,2, \ldots\right. \\
& \underline{K}_{k+1}=\underline{\bar{X}}_{k+1}^{\top} \quad \underline{k} \quad \underline{\bar{X}}_{k+1} \\
& \underline{M}_{k+1}=\underline{\bar{X}}_{k+1}^{\top} \quad \underline{M} \quad \bar{X}_{k+1} \\
& K_{k+1} \underline{Q}_{k+1}=M_{k+1} \quad Q_{k+1} \quad \Lambda_{k+1} \\
& \underline{X}_{k+1}=\underline{X}_{k+1} \quad \underline{Q}_{k+1}
\end{aligned}
$$

"Under conditions" we have

$$
\begin{aligned}
& X_{k+1} \rightarrow \Phi ; \underline{\Lambda}_{k+1} \rightarrow \underline{\Lambda} \\
& \Phi=\left[\underline{\phi}_{7}, \ldots, \underline{\phi}_{q}\right] ; \underline{\Lambda}=\operatorname{diag}\left(\lambda_{i}\right)
\end{aligned}
$$

CONDITION:

starting subspace spanned by \underline{X}_{1} must not be orthogonal to least dominant subspace required.

no. of -ve elements in \underline{D} must be equal to p.
Convergence rate:

$$
\Phi_{\mathbf{i}} \Rightarrow \underline{\lambda_{i} / \lambda_{q+1}} \quad \lambda_{i} \Rightarrow \underline{\left(\lambda_{i} / \lambda_{q+1}\right)^{2}} \quad \text { when }\left|\frac{\lambda_{i}^{(k)}-\lambda_{i}^{(k-1)}}{\lambda_{i}^{(k)}}\right| \leq \text { tol }
$$

Starting Vectors

Two choices

1) $\underline{x}_{1}=\left[\begin{array}{c}1 \\ 1 \\ \vdots \\ \vdots \\ 1\end{array}\right] ; \quad \underline{x}_{j}=\begin{gathered}e_{k} \\ j=2, \ldots, q-1\end{gathered}$
$\underline{x}_{\mathrm{q}}=$ random vector
2) Lanczos method Here we need to use q much larger than \mathbf{p}.

Checks on eigenpairs

1. Sturm sequence checks
2. $\varepsilon_{i}=\frac{\left\|\underline{K} \Phi_{i}^{(\ell+1)}-\lambda_{i}^{(\ell+1)} \underline{M}_{i}^{(\ell+1)}\right\|_{2}}{\left\|\underline{K} \Phi_{i}^{(\ell+1)}\right\|_{2}}$
important in all solutions.
Reference: An Accelerated Subspace Iteration Method, J. Computer Methods in Applied Mechanics and Engineering, Vol. 23, pp. 313-331, 1980 .

MIT OpenCourseWare
http://ocw.mit.edu

Resource: Finite Element Procedures for Solids and Structures Klaus-Jürgen Bathe

The following may not correspond to a particular course on MIT OpenCourseWare, but has been provided by the author as an individual learning resource.

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

