2.094 Finite Element Analysis of Solids and Fluids
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.
Assume that on tS_u the displacements are zero (and tS_u is constant). Need to satisfy at time t:

- **Equilibrium** of Cauchy stresses $^t\tau_{ij}$ with applied loads

 \[
 ^t\tau^T = \begin{bmatrix} ^t\tau_{11} & ^t\tau_{12} & ^t\tau_{13} \\ ^t\tau_{21} & ^t\tau_{22} & ^t\tau_{23} \\ ^t\tau_{31} & ^t\tau_{32} & ^t\tau_{33} \end{bmatrix}
 \]

 \[\text{For } i = 1, 2, 3\]

 \[
 ^t\tau_{ij, j} + ^t f_i^B = 0 \text{ in } ^tV \text{ (sum over } j) \]

 \[
 ^t\tau_{ij} ^t n_j = ^t f_i^{S_f} \text{ on } ^tS_f \text{ (sum over } j) \]

 (e.g. $^t f_i^{S_f} = ^t\tau_{i1} ^t n_1 + ^t\tau_{i2} ^t n_2 + ^t\tau_{i3} ^t n_3$)

 And: $^t\tau_{11} ^t n_1 + ^t\tau_{12} ^t n_2 = ^t f_i^{S_f}$

- **Compatibility** The displacements $^t u_i$ need to be continuous and zero on tS_u.

- **Stress-Strain** law

 \[
 ^t\tau_{ij} = \text{ function } (^t u_j) \]

 \[\text{Reading: Ch. 1, Sec. 6.1-6.2}\]
2.1 Principle of Virtual Work

\[
\int_{V} \tau_{ij} \varepsilon_{ij} \, d^4V = \int_{V} \tau_{ji} \varepsilon_{ji} \, d^4V + \int_{S_f} \pi_1 \, d^4S_f
\]
\tag{2.6}

where

\[
\varepsilon_{ij} = \frac{1}{2} \left(\frac{\partial \pi_i}{\partial x_j} + \frac{\partial \pi_j}{\partial x_i} \right)
\]
\tag{2.7}

with \(\pi_i \big|_{S_u} = 0 \)
\tag{2.8}

2.2 Example

Assume “plane sections remain plane”

Principle of Virtual Work

\[
\int_{V} \tau_{11} \varepsilon_{11} \, d^4V = \int_{V} \tau_{ji} \varepsilon_{ji} \, d^4V + \int_{S_f} \pi_1 \, d^4S_f
\]
\tag{2.9}

Derivation of (2.9)

\[
\tau_{11,1} + \tau_{j1} = 0 \quad \text{by (2.2)}
\]
\tag{2.10}

\[
(\tau_{11,1} + \tau_{j1}) \pi_1 = 0
\]
\tag{2.11}

or Principle of Virtual Displacements
Hence,
\[
\int_{\Omega} \left(\tau_{11,1} + t f_B \right) \pi_1 \, dV = 0 \quad (2.12)
\]
\[
\frac{t \tau_{11} \pi_1}{\pi_1} - \int_{\Omega} \pi_1 \, dV + \int_{\Omega} f_B \, dV = 0 \quad (2.13)
\]
where \(t \tau_{11} |_{S_f} = t P_r \).

Therefore we have
\[
\int_{\Omega} \tau_{11} \, dV = \int_{\Omega} f_B \, dV + \pi_1 \, dV + \pi_1 \, dV = 0 \quad (2.14)
\]

From (2.12) to (2.14) we simply used mathematics. Hence, if (2.2) and (2.3) are satisfied, then (2.14) must hold. If (2.14) holds, then also (2.2) and (2.3) hold!

Namely, from (2.14)
\[
\int_{\Omega} \tau_{11} \, dV = \int_{\Omega} f_B \, dV + \pi_1 \, dV + \pi_1 \, dV \quad (2.15)
\]
or
\[
\int_{\Omega} \tau_{11} \, dV = \int_{\Omega} f_B \, dV + \pi_1 \, dV + \pi_1 \, dV = 0 \quad (2.16)
\]

Now let \(\pi_1 = x \left(1 - \frac{x}{L} \right) \left(\tau_{11,1} + t f_B \right) \), where \(tL \) = length of bar.

Hence we must have from (2.16)
\[
t \tau_{11,1} + t f_B = 0 \quad (2.17)
\]
and then also
\[
t P_r = t \tau_{11} \quad (2.18)
\]