FSI Analysis in Aerodynamics Applications The traditional analysis of fluid flow around an airfoil assumes that the airfoil is rigid and hence does not change shape or position. However, using a fluid flow structure interaction analysis, the effects of the deformations of the structure are included in the calculation of the aerodynamic pressure distribution.
In this News we present a fullycoupled 2D fluid flow structure analysis of a NACA0012
airfoil using FCBIC elements to represent the NavierStokes fluid and 4node plane
strain isobeam elements to model the wing. The longitudinal flexibility of the wing
is modeled using a vertical spring and a rotational spring. The analysis was carried
out assuming steady state conditions, a Reynolds number of 2.1x10^{6}, and a
horizontal flow direction, α = 0°. A schematic is shown in Figure 1.
Figure 2 shows the vertical displacement and rotation of the airfoil when the wing is flexible. Figure 3 shows the ADINA calculated pressure coefficient along the airfoil surface assuming first the wing to be rigid and stationary, and then the wing to be flexible. The experimental results for α = 0° assuming a rigid wing have been taken from reference 1. In Figure 4, we show a detail of the pressure contours. This solution example indicates that aerodynamic fluid flow structural interaction problems can be analyzed using ADINA. For more information on ADINA FSI, please refer to our page on fluidstructure interaction.
